Inorganic Chemistry

pubs.acs.org/IC Article

High-Pressure Synthesis and Structure of Quasi-One-Dimensional Ba_3MSe_5 (M = Ti, Zr, and Hf)

Zelong Wang,[#] Guodong Wang,[#] Wenmin Li,[#] Zhe Wang, Runteng Chen, Lei Duan, Jianfa Zhao, Zheng Deng, Jianfeng Zhang,^{*} Tingjiang Yan,^{*} Jun Zhang,^{*} Xiancheng Wang, and Changqing Jin^{*}

ACCESS I

Cite This: Inorg. Chem. 2025, 64, 13705-13714

Metrics & More

Article Recommendations

ABSTRACT: The ternary selenides Ba_3MSe_5 (M = Ti, Zr, and Hf) were successfully synthesized through a solid-state reaction under high-pressure and high-temperature conditions. These compounds crystallize in a hexagonal structure, consisting mainly of one-dimensional (1D) face-sharing MSe_6 octahedral chains and Se chains. The intriguing superlattice along 1D chains was identified by theoretically calculating the Fermi surface and phonon spectrum of the Ba_3MSe_5 primitive cell (where M = Ti, Zr, and Hf). These superlattices exhibit average tetramerization, trimerization, and the primitive structures, respectively, as the M metal ions change from the 3d to 5d period. For the Ti- and Ti-containing compounds, the ti-axis lengths are four times and three times that of the primitive structure, respectively. The space groups of ti-axis lengths are four times and three times that of the primitive structure, respectively. The space groups of ti-axis lengths are four times and three times that of the primitive structure, respectively. The space groups of ti-axis lengths are four times and three times that of the primitive structure, respectively. The space groups of ti-axis lengths are four times and three times that of the primitive structure, respectively. The space groups of ti-axis lengths are four times and three times that of the primitive structure, respectively, as the ti-axis lengths are four times and three times that of the primitive structure, respectively, as the ti-axis lengths are four times and three times that of the primitive structure, respectively, as the ti-axis lengths are four times and three times that of the primitive structure, respectively, as the ti-axis lengths are four times and three times that of ti-axis lengths are four times and three times that ti-axis lengths are four times and ti-axi

Ba₉Zr₃Se₁₅

■ INTRODUCTION

The one-dimensional (1D) material system exhibits many unusual physical phenomena and thereby attracts much attention. For example, the quasi-1D conductor $\text{Li}_{0.9}\text{Mo}_6\text{O}_{17}$ undergoes a dimensional crossover from a 1D conductor to 3D metal at ~24 K, which induces an electronic spin/charge density wave (SDW/CDW) and further leads to a transition to semiconductor. Rb₂Mo₆Se₆, consisting of Mo₆Se₆ chains, undergoes a CDW transition at approximately 170 K. Ba₃TiTe₅ exhibits superconductivity under pressure after suppressing the SDW/CDW and non-Fermi liquid behavior in sequence. ³

There are two types of typical 1D materials with a hexagonal Hf_sSn_3Cu -anti-type structure. RE_3MX_5 (where RE = rare earth metal, M = Ti, Zr, Hf, Nb, V, Cr, and Mn, and X = P, As, Sb, and Bi) $^{4-10}$ and U_3MSb_5 (M = Sc, Ti, Zr, Hf, V, Nb, Cr, and Mn) 11,12 series materials adopt a hexagonal Hf_sSn_3Cu -anti-

type structure with a space group of $P6_3/mcm$ (No. 193). They consist of face-sharing MX_6 octahedral chains and X-chains, which are separated by RE atoms. These 1D MX_6 octahedral chains form a triangular lattice in the ab plane, and the X-chains are located at the central sites. The transition metal ions only occupy the (0, 0, 0) site with the equal distance to the neighbors and form uniform 1D chains. Due to the nonnegligible contributions of rare earth ions correlating the adjacent 1D MX_6 octahedral chains, these materials exhibit a 3D band structure. For example, the complementary

Ba₃HfSe₅

Supporting Information

Received: February 28, 2025 Revised: June 5, 2025 Accepted: June 12, 2025 Published: June 26, 2025

calculation proves the non-negligible contributions of La to the density of state (DOS) at the Fermi level in La₃MBi₅ and La₃MSb₅ (where M = Ti, Zr, and Hf), and therefore, the La³⁺ ions are not perfectly ionic, leading to a well-defined 3D conductor. Diversity in physical properties is also observed. For example, La₃MnAs₅ displays a ferromagnetic metal behavior with a ferromagnetic transition temperature $T_{\rm c}$ of ~112 K due to the strong orbital hybridization between the MnAs₆ chains and intermediate La atom by the itinerant electrons. La₃CrAs₅ also exhibits a ferromagnetic behavior at ~50 K owing to a weaker interchain interaction compared with La₃MnAs₅.

Another typical 1D system, Ba₃M'Ch₅ (where M' = Ti, V, Cr, Fe, Co, Nb, Ta, and Sn and Ch = S, Se, and Te), 3,14-24 shows similar crystal structure to RE₃MX₅. The M'Ch₆ chains are separated by Ba²⁺, leading to a weak interchain interaction. These materials are typically synthesized at high-pressure and high-temperature conditions and behave as semiconductors. A variety of structural distortions or superlattices along the 1D MCh₆ chains and M-chains induce many unique physical properties. For example, Ba₆Cr₂S₁₀, solved in the P-62c (No. 190) space group based on the single-crystal measurement, features dimerized CrS₆ chains with antiparallel spin alignment, making Ba₆Cr₂S₁₀ a rare ferrotoroidic candidate material.¹⁸ Ba₉Fe₃Se₁₅ has a pseudohexagonal structure with a C2/c space group due to the β angle of 89.9°, as proved by the singlecrystal structure analysis. There are two Fe sites in the FeSe₆ chain, forming a trimerized superlattice. A tilted screw spiral magnetic structure breaks the symmetry of space inversion and further causes the electric polarization. 17,25 As mentioned above, the superlattice or subtle structure distortion along 1D chains causes diversified physical properties and, in turn, clarifies the superlattice structure plays the predominant role in elucidating the origin of microphysical behaviors. For instance, a Peierls structural transition revealed in Rb₂Mo₆Te₆ and Cs₂Mo₆Te₆ can well explain a broad metal-semiconductor transition.²⁶ However, growing single crystals under highpressure and high-temperature conditions remains challenging to date. A new method to determine the subtle structural distortions on the 1D chains is always desirable.

As is well-known, Fermi surface nesting often occurs in 1D materials due to the strong electron-phonon coupling. This leads to the formation of CDW and lattice instability, further resulting in structure distortion.²⁷ The character vector that characterizes the structure change is directly linked to the nesting vector of the 1D Fermi surface. Therefore, it is possible to quantitatively validate the structure stability and distortion degree of a 1D primitive cell by analyzing the phonon spectrum and Fermi surface based on theoretical calculation. In addition, the transport behaviors for the 1D materials are complex and easily disrupted by several factors. For a 1D conducting system, Umklapp scattering has an important influence on the electron transfer along the 1D chains, which usually results in a correlation gap and insulating state.^{28,29} Meanwhile, the electronic transport properties in the 1D system are primarily determined by electronic hopping between interchains. In addition, the electron backscattering or disorder induced by the defects in the 1D system tends to localize the electrons, which will further impose the important influences on the transport behavior.²⁴

In the present work, quasi-1D Ba₃MSe₅ (M = Ti, Zr, and Hf) materials were synthesized as models to study the superlattice structure and accompanying physical properties

evolution when metal ions changed from the 3d to the 5d period. Comprehensive structural and band gap analysis revealed the critical role of disorder induced by the vacancies on the M sites and electronic hopping between interchains in the electronic transport property in the Ba_3MSe_5 system. The diversified superlattice structures within the 1D MSe_6 chain were validated through a combination of theoretical calculations and powder diffraction experiments.

■ EXPERIMENTAL PART

Ba₃MSe₅ (M = Ti, Zr, and Hf) polycrystalline samples were prepared by high-pressure and high-temperature methods using a 6 × 1400 T cubic anvil high-pressure apparatus. Commercially available lumps of Ba (Alfa, immersed in oil, >99.2% pure) and crystalline powders of Ti (Alfa, 99.99% pure), Zr (Alfa, 99.99% pure), Hf (Alfa, 99.99% pure), and Se (Alfa, 99.999% pure) were used as the starting materials. The precursor BaSe was prepared at 700 °C for 20 h in a vacuum quartz tube. The mixture of BaSe, M (M = Ti, Zr, and Hf), and Se powder with a stoichiometric ratio of 3:1:2 was finely ground and pressed into a cylinder with a diameter of 6 mm and a height of 3 mm, which was then sintered at 1500 °C and 5.5 GPa for 30 min in the cubic high-pressure apparatus. After the high-pressure and high-temperature process, the pure polycrystalline Ba₃MSe₅ (M = Ti, Zr, and Hf) samples were obtained.

The powder X-ray diffraction (XRD) measurements were performed on a Rigaku Smart Lab diffractometer with Cu $K\alpha$ radiation (λ = 1.54059 Å, 45 kV, and 200 mA) in the 2θ range from 10° to 100° with steps of 0.01°. The Rietveld refinement on the diffraction spectra was conducted with GSAS and EXPGUI packages. Energy-dispersive X-ray (EDX) spectroscopy was measured to confirm the chemical composition of the three compounds Ba_3MSe_5 (M = Ti, Zr, and Hf). The DC magnetic susceptibility was measured using a superconducting quantum interference device (SQUID-VSM; Quantum Design). The electronic transport properties were measured by four-probe electrical conductivity methods using a physical property measurement system (PPMS). The UV—vis diffuse reflectance spectroscopy (DRS) was also used to obtain the band gap.

CALCULATION METHOD

The electron and phonon structures for Ba₃MSe₅ (M = Ti, Zr, and Hf) systems were calculated based on the density functional theory $(DFT)^{31,32}$ and density functional perturbation theory $(DFPT)^{33,34}$ as implemented in the QUANTUM ESPRESSO (QE) package. 35 The generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) type³⁶ was chosen for the exchange-correlation functional. The kinetic energy cutoff of the wave function was set to be 80 Ry. In the electronic and 1D phonon structure calculations, we sampled Brillouin zone (BZ) using an $8 \times 8 \times 10$ k-point mesh and a $1 \times 1 \times 6$ q-point mesh, respectively. The Gaussian smearing method with a width of 0.004 Ry was employed for Fermi surface broadening. In structural optimization, both lattice constants and internal atomic positions were fully relaxed until the forces on all atoms were smaller than 0.002 Ry/Bohr. To map the topography of the Fermi surface and its associated orbital weight information, we utilized the maximally localized Wannier functions³⁷ interpolation technology. A fine $50 \times 50 \times 50 \text{ k/q-point}$ mesh was used for

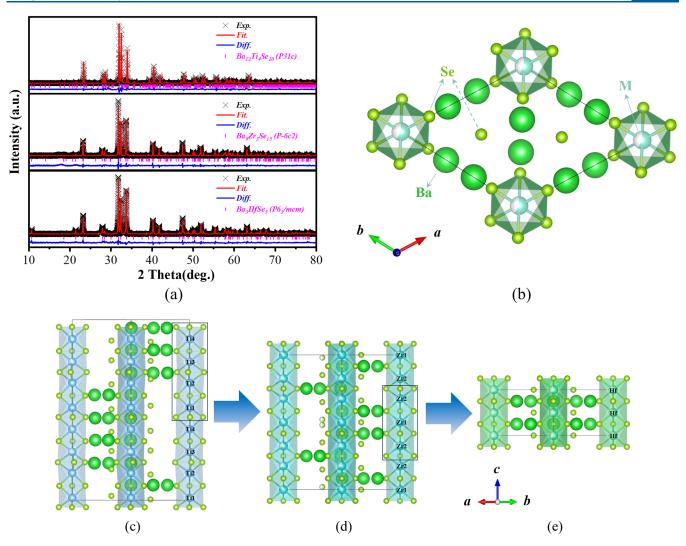


Figure 1. (a) The XRD patterns and the refinement results for the $Ba_{12}Ti_4Se_{20}$, $Ba_9Zr_3Se_{15}$, and Ba_3HfSe_5 samples collected at ambient conditions. (b–e) The crystal structure schemes of Ba_3MSe_5 (M = Ti, Zr, and Hf). (b) shows the [001] projection for the Ba_3MSe_5 material system, and (c–e) is the [110] projection for the crystal structure of $Ba_{12}Ti_4Se_{20}$, $Ba_9Zr_3Se_{15}$, and Ba_3HfSe_5 , respectively.

plotting the Fermi surface and calculating the electronic susceptibility.

RESULTS

The powder XRD patterns of as-synthesized Ba_3MSe_5 (M = Ti, Zr, and Hf) samples are shown in Figure 1a, which exhibit similar profiles to the previously discovered quasi-1D "315" system for $(Ba/RE)_3M(X/Ch)_5$ (where X = P, As, Sb, and Bi; M = metal ions; Ch = S, Se, and Te). These structures can be well indexed to the hexagonal structure by powder X powder diffraction analysis software.³⁸ All three samples primarily consist of face-sharing MSe₆ octahedron chains extending along the c-axis, as shown in Figure 1b. Further structural analysis was carried out but could not discern the complex superstructure distortion information within the MSe₆ octahedron chains. For example, Ba₃TiTe₅ is considered to adopt the primitive cell, which agrees with the structures in the RE₃MX₅ system; Ba₆Cr₂S₁₀ and Ba₉Fe₃Se₁₅ exhibit dimerized and trimerized superstructures along the c-axis, respectively, as solved by single-crystal diffraction measurements. Nevertheless, several attempts were made to identify the subgroup according to the hexagonal structure, such as P6c2 (No. 188) for the trimerization structure, P-62c (No. 190) for the

dimerization, and $P6_3/mcm$ (No. 193) for the primitive cells. And almost indistinguishable results were obtained. Therefore, it is not possible to clarify the accurate structural information along the c-axis for the present Ba_3MSe_5 (M = Ti, Zr, and Hf) samples based on the powder diffraction data refinements. We tried to grow single crystals of Ba_3MSe_5 (M = Ti, Zr, and Hf) under high-pressure and high-temperature conditions, including the use of the flux method, but failed. It may originate from the intrinsic structural instability caused by the number of vacancies at metal ion sites. Therefore, a new structural characterization technique is urgently developed.

The detailed theoretical analysis demonstrated the structural distortion along 1D chains in the $Ba_3MSe_5\ (M=Ti,\ Zr,\ and\ Hf)$ system, and this will be discussed later. Based on the calculation results, the trimerized structure model and the primitive structure were adopted to refine the powder X-ray diffraction data for $Ba_9Zr_3Se_{15}$ and Ba_3HfSe_5 , respectively, using the structures of $Ba_9V_3Te_{15}^{\ 16}$ and $Ba_3TiTe_5^{\ 3}$ as references. For $Ba_{12}Ti_4Se_{20}$, the structure seems more complex. Our theoretical calculations proposed an average tetramerization structure distortion along the 1D direction. Therefore, a tetramerization model with a space group of P31c was chosen to refine the structure of $Ba_{12}Ti_4Se_{20}$. The XRD patterns and

Table 1. Crystallographic Data for Ba₁₂Ti₄Se₂₀, Ba₉Zr₃Se₁₅, and Ba₃HfSe₅ Samples, Including Refinement Parameters, Lattice Constants, and Bond Lengths

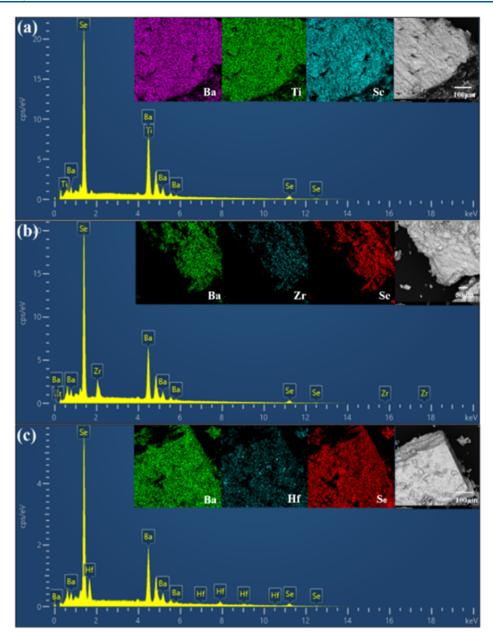
,	8				
	$Ba_{12}Ti_4Se_{20}$				
space group	P31c				
lattice parameters (Å)	a = 9.5304(8) Å, c = 25.3505(3) Å				
volume (ų)	1994.10(1)				
formula weight (g/mol)	6792.63(8)				
density (g/cm³)	5.65(6)				
refinement parameters	$\chi^2 = 5.18(3)$ wRp = 7.36%, Rp = 5.24%				
$Ti_1-Se_1(x3)$ (Å)	2.5852(5)	$Ti_2-Se_2(x3)$ (Å)	2.5995(6)		
$Ti_1-Se_2(x3)$ (Å)	2.7640(5)	$Ti_2-Se_3(x3)$ (Å)	3.1328(1)		
VBS (Ti ₁)	2.7851(7)	VBS (Ti ₂)	2.0495(1)		
$Ti_3-Se_3(x3)$ (Å)	2.6359(2)	$Ti_4-Se_4(x3)$ (Å)	2.7206(3)		
$Ti_3-Se_4(x3)$ (Å)	2.9530(1)	$Ti_4-Se_5(x3)$ (Å)	2.8733(6)		
VBS (Ti ₃)	2.1397(2)	VBS (Ti ₄)	1.9855(3)		
$Ti_5 - Se_5(x3)$ (Å)	2.8123(2)	$Ti_6 - Se_6(x3)$ (Å)	2.7461(4)		
$Ti_5-Se_6(x3)$ (Å)	2.5074(3)	$Ti_6-Se_7(x3)$ (Å)	2.6578(4)		
VBS (Ti ₅)	3.0584(7)	VBS (Ti ₆)	2.5309(8)		
Ti_7 -Se ₇ (x3) (Å)	2.4352(1)	Ti_8-Se_8 (x3) (Å)	2.2826(1)		
Ti_7 -Se ₈ (x3) (Å)	2.7794(6)	$Ti_8-Se_9(x3)$ (Å)	3.7867(2)		
VBS (Ti ₇)	3.6033(6)	VBS (Ti ₈)	3.9703(1)		
VBS (Ti)	2.76(5)				
occupation of Ti (from XRD refinement)	0.88(3)				
occupation of Ti (from EDX measurement)	0.79(1)				
band gap (eV)	0.34(2)				
	$Ba_9Zr_3Se_{15}$				
space group	$P\overline{6}c2$				
lattice parameters (Å)	a = 9.5677	a = 9.5677(2) Å, c = 19.1731(6) Å			

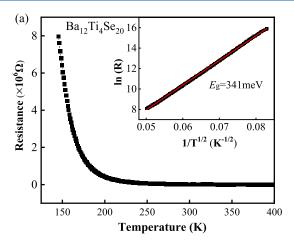
	$\mathrm{Ba_9Zr_3Se_{15}}$			
volume (ų)	1519.99(4)			
formula weight (g/mol)	5186.79(5)			
density (g/cm ³)	5.66(6)			
refine parameters	$\chi^2 = 4.18(1)$, wRp = 3.11%, Rp = 2.19%			
$Zr_1 - Se_1(x6)$ (Å)	2.7557(8)	(Å)		
		$Zr_2-Se_3(x3)$ (Å)	2.7019(6	
VBS (Zr_1)	3.2594(2)	VBS (Zr ₂)	3.0976(3	
VBS (Zr)	3.1515(6)			
occupation of Zr ₁	0.81(7)			
occupation of Zr ₂	0.67(7)			
average occupation (Zr) (from XRD refinement)	0.72(4)			
occupation of Zr (from EDX measurement)	0.70(1)			
band gap (eV)	1.20(2)			
	Ba_3HfSe_5			
space group	P6 ₃ /mcm			
lattice parameters (Å)	a = 9.5756(1) Å, c = 6.3802(7) Å			
volume (Å ³)	506.64(5)			
formula weight (g/mol)	1818.53(5)			
density (g/cm ³)	5.96(1)			
refine parameters	$\chi^2 = 6.58(9)$, wRp = 3.60%, Rp = 2.50%			
Hf-Se (x6) (Å)	2.7277(1)			
VBS (Hf)	3.4225(3)			
occupation (Hf) (from XRD refinement)	0.57(4)			
occupation of Hf (from EDX measurement)	0.57(1)			
	1.60(1)			

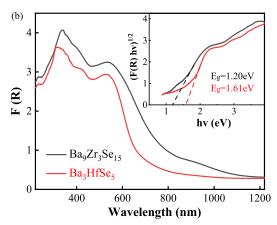
the refinement results for Ba₃MSe₅ (M = Ti, Zr, and Hf) samples are shown in Figure 1a. The refinement smoothly converged, and the detailed crystallographic data are summarized in Tables 1 and S1. The lattice parameters are a = 9.5304(8) Å and c = 25.3505(3) Å for Ba₁₂Ti₄Se₂₀, a =9.5677(2) Å and c = 19.1731(6) Å for Ba₉Zr₃Se₁₅, and a =9.5756(1) Å and c = 6.3802(7) Å for Ba₃HfSe₅, respectively. Based on the refinement results, the crystal structure schemes of Ba_3MSe_5 (M = Ti, Zr, and Hf) are plotted in Figure 1b-e, in which the superlattice repeating units in the 1D MSe₆ chains are emphasized by the rectangle. The structures are similar to the hexagonal Hf₅Sn₃Cu-anti-type structure, showing a triangular lattice along the ab plane formed by infinite columns of the face-sharing MSe₆ octahedron. In the middle of the triangle, it is occupied by the Se chains. The distance between the adjacent 1D MSe₆ chains, indicated by the lattice constant a, remains larger than 9.5 Å. Therefore, the Ba_3MSe_5 (M = Ti, Zr, and Hf) samples exhibit well-defined 1D structural characteristics. Our calculation found that the d_{z^2} orbital of the M atoms in 1D MSe₆ chains and the p_z orbital of the Se atoms in the intermediate Se chains contribute to the structural multimerization distortion. Also, it is worth noting that the electronic transport properties of these 1D materials are mainly derived from electron hopping between interchains. Therefore,

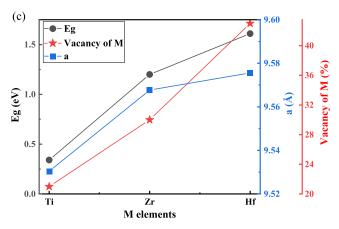
the increased interchain distance for Ba_3MSe_5 (M = Ti, Zr, and Hf) may contribute to a larger band gap.

The repeating units of superlattice along 1D MSe₆ chains were emphasized by the rectangle shown in Figure 1c,d. There are four Ti atoms forming Ti₁-Ti₂-Ti₃-Ti₄ units in $Ba_{12}Ti_4Se_{20}$, and one Zr_1 located at the (0, 0, 0) site and two Zr_2 at the (0, 0, 0.17612) site form the $Zr_2-Zr_1-Zr_2$ trimerized units in Ba₉Zr₃Se₁₅, while HfSe₆ chains solely contain the Hf atom at the (0, 0, 0) site spaced equally with an interatomic distance of 3.1902(1) Å to form uniformly distributed 1D chains along the c-axis. Thus, the coordinated environment of transition metals in Ba_3MSe_5 (M = Ti, Zr, and Hf) samples is different. The bond valence sum (BVS) model relates the bond lengths around a metal center to its oxidation state. The M-Se bond lengths in the three compounds are given in Table 1. According to the formula $V_i = \sum \exp{\frac{(R_0 - r_{ij})}{L}}$ where V_i is the sum of all valences of a coordination sphere around the metal ion i; r_{ii} is the length of the bond between atoms i and j, respectively; R_0 is the empirically determined distance for a given cation—anion pair; and b is the universal parameter and is set equal to 0.37. For Ti, Zr, and Hf, the R_0 values are 2.38, 2.53, and 2.52, respectively. The calculated valence states of M ions (M = Ti, Zr, and Hf) at different sites are shown in Table 1. The average oxidation states for Ti, Zr, and Hf ions in Ba_3MSe_5 (M = Ti, Zr, and Hf) are 2.76(5),




Figure 2. Energy-dispersive X-ray spectrum for the samples of (a) Ba₁₂Ti₄Se₂₀, (b) Ba₉Zr₃Se₁₅, and (c) Ba₃HfSe₅.


3.15(1), and 3.42(2), exhibiting an increase as the metal evolves from the 3d to the 5d period. These results are supported by our theoretical calculation where charge transfer from the M $\rm d_{z^2}$ orbital to the Se $\rm p_z$ orbital occurs, which is accompanied by the Fermi surface changes from a 1D to 3D character.


Through carefully examining the refined results, the vacancies on the M ion sites are observed for Ba_3MSe_5 (M = Ti, Zr, and Hf) compounds. The average occupations on M sites are 88.3%, 72.4%, and 57.4%, respectively. EDX measurement was performed to determine the chemical composition of the three compounds. In the insets of Figure 2, the morphology and element mapping measurements on the crystalline particles confirmed the uniform distribution of Ba, M, and Se elements in the three samples. The average chemical stoichiometric ratios of Ba:M:Se, obtained by measuring six distinct small particles for the Ti, Zr, and Hf selenides, are 3.00:0.79:4.83, 3.00:0.70:5.10, and 3.00:0.57:4.85, respectively.

The experimental results are in good agreement with refinement results, demonstrating the vacancies on M sites in the sample Ba_3MSe_5 (M = Ti, Zr, and Hf). Generally, the distortion of 1D structure to form the superlattice can stabilize the crystal structure, leading to fewer vacancies in these compounds. Therefore, $Ba_{12}Ti_4Se_{20}$ with an average tetramerization structure shows ~20% Ti vacancy, while Ba_3HfSe_5 with a primitive lattice shows Hf vacancy of more than 40%. These vacancies on M sites will exert important influences on the electronic transport property of Ba_3MSe_5 (M = Ti, Zr, and Hf) materials.

Figure 3a shows the temperature dependence of the resistance for the $\mathrm{Ba_{12}Ti_4Se_{20}}$ sample. The resistance increases as the temperature decreases, exhibiting semiconducting behavior. The inset presents the linear fit to the curve of $\ln(\rho)$ as a function of inverse temperature using $\rho \propto \exp(\Delta_g/2k_\mathrm{B}T)$, where Δ_g is the semiconducting band gap and k_B is the Boltzmann constant. The resistivity curve can be well fitted,

Figure 3. (a) The resistance as a function of temperature for the $Ba_{12}Ti_4Se_{20}$ sample, and the inset shows the inversed temperature dependence of $In(\rho)$; (b) UV–vis DRS spectra of $Ba_9Zr_3Se_{15}$ and Ba_3HfSe_5 ; (c) the changes of the band gap, lattice constant a and vacancies on the M sites in the Ba_3MSe_5 (M = Ti, Zr, and Hf) sample as the metal ions evolve from Ti to Hf.

and the band gap Δ_g of Ba₁₂Ti₄Se₂₀ is estimated to be 0.34 eV. For Ba₉Zr₃Se₁₅ and Ba₃HfSe₅, the band gaps were determined by UV—vis diffuse reflectance spectroscopy due to resistances that were too large for electronic transport measurement. As shown in Figure 3b, the absorption edge of Ba₉Zr₃Se₁₅ shows an obvious red shift compared to that of Ba₃HfSe₅, indicating a decreased band gap. According to the Tauc method, $(\alpha h\nu)^{1/\gamma} = B(h\nu - E_g)$, where α is the energy-dependent absorption

coefficient, h is the Planck constant, ν is the photon frequency, E_g is the band gap energy, and B is a constant. The γ factor depends on the nature of the electron transition and is equal to 1/2 or 2 for the direct and indirect transition band gaps, respectively. Based on the assumption that γ equals 2 for the indirect band gap, the band gaps of Ba₉Zr₃Se₁₅ and Ba₃HfSe₅ are estimated to be 1.20 and 1.61 eV, respectively. Thus, as shown in Figure 3c, the band gaps exhibit an increase as the compounds evolve from Ba12Ti4Se20 to Ba3HfSe5. Magnetic susceptibility measurements revealed that the Ba12Ti4Se20 sample is Pauli paramagnetic, while Ba₉Zr₃Se₁₅ and Ba₃HfSe₅ show obvious diamagnetic properties within a measuring temperature range of 2-300 K, as shown in Figure S1 in the Supporting Information. For the Ti, Zr, and Hf, the valence electron configurations are 4s²3d², 5s²4d², and 6s²5d², respectively. The oxidation states of Ti, Zr, and Hf in Ba_3MSe_5 compounds are 2.76(5), 3.15(1), and 3.42(2), respectively. Therefore, valence electrons tend to lose completely as the metal ions evolve from the 3d to the 5d period, which leads to a transition from Pauli paramagnetic to diamagnetic properties for Ba₁₂Ti₄Se₂₀, Ba₉Zr₃Se₁₅, and

In 1D materials, due to strong electron—phonon coupling, the 1D Fermi surface is prone to nesting, which leads to lattice instability and structural distortion. The nesting vector can quantitatively reflect the characteristics of the structural distortion. By theoretically calculating and analyzing the Fermi surface and phonon spectrum of the Ba_3MSe_5 (M = Ti, Zr, and Hf) primitive cell, it is expected to assess the distortion along the one-dimensional direction, determine the dynamical stability of these materials, and indirectly infer the subtle structural distortions within them.

To study the underlying structure distortion and multimerization, first-principles calculations were carried out on the three systems, Ba_3MSe_5 (where M = Ti, Zr, and Hf). Initially, the calculations were focused on the band structures in their primitive forms. As depicted in Figure 4a-c, each system exhibits two-orbital quasi-1D band dispersions near the Fermi level. These dispersions originate from two distinct orbitals: one is from the dz² orbital of the M atom and the other from the intermediate Se atomic p_z orbital, as indicated by the orbital weights on the band structure (blue circles represent M d_{z^2} orbitals and red circles represent Se p_z orbitals). The nearly flat Fermi surfaces shown in Figure 5 further confirm the characteristics of the quasi-1D dispersions. Here, the color bar on the right indicates the orbital weights, with blue for M d_{z^2} and red for Se p_z orbitals. As shown in Figure 5, a clear trend observed from M = Ti to Zr to Hf is the reduced occupancy in the Brillouin zone (BZ) of the M d_{z^2} orbitals. This suggests a charge transfer from the M d_{z²} orbital to the Se p_z orbital, resulting in an increasing valence state of the M atom. In addition to the changes in valence states, it is also found that variations in the Fermi surfaces and Fermi vectors $(k_{\rm F})$ play a crucial role in structural multimerization distortion, which will be discussed later.

To investigate the structural stability of these three compounds, phonon calculations were performed along the G-A line of BZ based on the DFPT. As displayed in Figure 6a—c, despite their similar crystal structures, the phonon instabilities of these compounds exhibit significant differences. Specifically, the phonon spectra of Ba_3TiSe_5 and Ba_3ZrSe_5 display two types of imaginary frequencies, which are attributed to the vibrations of M atoms (blue circles) and Se

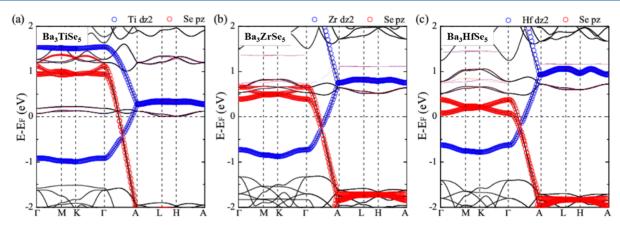


Figure 4. Electronic band structure for the (a) Ba_3TiSe_5 , (b) Ba_3ZrSe_5 , and (c) Ba_3HfSe_5 systems. The colored circles indicate the projected weights of M d_z^2 (blue) and Se p_z (red) orbitals.

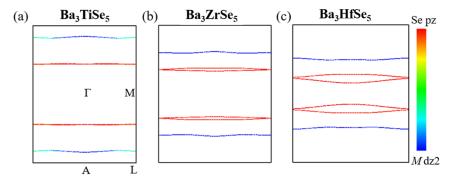


Figure 5. Fermi surfaces of the (a) Ba_3TiSe_5 , (b) Ba_3ZrSe_5 , and (c) Ba_3HfSe_5 systems. The color bar indicates the orbital weights of the Se p_z orbital (red) and M d_z^2 orbital (blue).

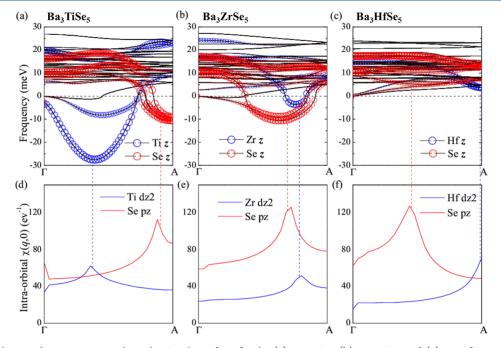


Figure 6. (a–c) The 1D phonon structure along the G-A line of BZ for the (a) Ba₃TiSe₅, (b) Ba₃ZrSe₅, and (c) Ba₃HfSe₅ systems. The colored circles indicate the weights of M (blue) and Se (red) atomic vibrations along the z-direction. (d,e) The intraorbital bare static susceptibility $\chi(q,0)$ within the M atomic d_z² orbital (blue line) and Se atomic p_z orbital (red line). A blue (red) dotted line connects the upper and lower panels, indicating the relationship between the maximum imaginary frequency from M (Se) atoms and the peak of $\chi(q,0)$ within the M d_z² (Se p_z) orbital.

atoms (red circles) in the z-direction. For Ba₃ZrSe₅ in Figure 6b, the characteristic wave vectors exhibiting the highest imaginary frequencies for Zr (0.78π) and Se (0.66π) are close,

hinting at a nearly commensurate trimerized structure. In contrast, in the Ba_3TiSe_5 system shown in Figure 6a, the imaginary frequencies for Ti and Se are centered around 0.4π

and 1.0π , respectively, indicating a more intricate multimerization pattern ranging from two to five. An average tetramerization structure distortion along the 1D direction can be applied in analyzing the X-ray diffraction data. Conversely, Ba₃HfSe₅ exhibits no signs of lattice dynamic instability. It is well-established that the 1D Fermi surface can readily exhibit nesting, potentially leading to lattice instability (or multimerization) via strong electron-phonon coupling such as the Kohn anomaly. For the Ba_3MSe_5 (M = Ti, Zr, and Hf) system, the distinctive phonon instabilities of M and Se atoms are also likely related to the 1D Fermi surface topology and the atomic orbital distribution around the Fermi level. Specifically, the M atomic d_{z^2} orbitals and Se atomic p_z orbitals are more crucial, as their intraorbital scattering mediated by phonons can naturally influence the M/Se atomic structural instabilities in the z-directions. The character vector for the structure multimerization should correspond to the nesting vector. To further investigate the impact of the Fermi surfaces and their nesting effects on phonon instability, we calculated the intraorbital bare static susceptibility, $\chi^{\alpha}(q,0)$, within the M atomic d_{z^2} orbital and the Se atomic p_z orbital:

$$\chi^{\alpha}(q, i\omega) = -\frac{1}{2N} \sum_{mn} \frac{f(\varepsilon_{n,k}) - f(\varepsilon_{m,k+q})}{i\omega + \varepsilon_{n,k} - \varepsilon_{m,k+q}} \langle \alpha | n, k \rangle \langle n, k | \alpha \rangle$$
$$\langle \alpha | m, k + q \rangle \langle m, k + q | \alpha \rangle$$

where α labels the M d_z² or Se p_z orbital, $f(\varepsilon)$ is the Fermi distribution function, and $\varepsilon_{n,k}$ is the band structure of Figure 4. The calculation results of $\chi^{\alpha}(q,0)$ can be found in Figure 6d–f. Here, we only considered its qz's dependency and integrated the qx and qy subscripts. As illustrated in Figures 6d and 6e, the one-dimensional $\chi(q,0)$ for Ba₃TiSe₅ and Ba₃ZrSe₅ reveal distinct peaks in both the M d_{z^2} (blue line) and Se p_z (red line) orbitals. These peaks correspond with the locations of maximum phonon imaginary frequencies for M and Se atoms in the upper panels, as indicated by the blue and red dotted lines. Meanwhile, for the Ba₃HfSe₅ system, the reduced 1D character of its Fermi surfaces can smear the nesting effect and harden the corresponding phonon modes. Nevertheless, there is still phonon softening around the peaks of χ in Figure 6f. These observations suggest that the Fermi surfaces and the $k_{\rm F}$ of the M d_{z^2} and Se p_z orbitals significantly influence the periodicity of multimerization in the MSe₃ and Se atomic chains, respectively. Furthermore, the detection effect at the M atomic sites can easily alter the valence states and orbital fillings of the M atoms, thereby modifying their Fermi surfaces and $k_{\rm F}$. Consequently, this can effectively impact structural multimerization and band gap.

DISCUSSION

The Ba_3MSe_5 (M = Ti, Zr, and Hf) system, consisting of face-sharing MSe_6 octahedral chains and Se linear chains, both separated by Ba atoms, shows a typical 1D structural character. Compared to the RE_3MX_5 (RE = rare earth metal and U, X = P, As, Sb, and Bi) systems with uniformly distributed MX_6 chains, $^{4-10}$ the superlattices in the Ba_3MX_5 (X = S, Se, and Te) systems along the MX_6 octahedral chains exhibit intriguing physical properties, such as pressure-induced superconductivity, spin density wave, and magnetic electronic coupling interaction. The growth of single crystals at high-pressure conditions remains challenging, which leads to difficulties in clarifying the accurate structural distortion of the 1D chains

and thereby further exploring the origin of their physical properties. As to the 1D structural character, theoretical calculations in the present work analyzed the 1D Fermi surface, nesting vector, and phonon spectrum of the Ba_3MSe_5 (M = Ti, Zr, and Hf) primitive cell and found that Ba_3MSe_5 (M = Ti and Zr) are stabilized through superlattice distortion. The average tetramerization and trimerization structures for the Ti and Zr counterparts were quantitatively elucidated by characteristic wave vectors, while Ba₃HfSe₅ shows a simple primitive structure with uniformly distributed Hf chains. Thus, by a combination of the powder diffraction data and theoretical calculations, the 1D superlattice character in the Ba₃MSe₅ (M = Ti, Zr, and Hf) system can be well clarified for the 1D system. The currently developed structural analysis methods have some limitations. For instance, when it comes to complex systems, such as Ba₁₂Ti₄Se₂₀, these methods may fail to provide accurate structural information. Therefore, the single-crystal structure determination still serves as the most direct evidence, and the presented calculation method can only be regarded as a candidate approach.

The superlattice structure plays a critical role in transport properties of the 1D materials. In the Ba₃MSe₅ (M = Ti, Zr, and Hf) system, more charge transfer from the M d_z² orbital to the Se p_z orbital was observed in the present work, resulting in an increasing valence state of the M ions from Ti to Hf. Meanwhile, the reduced 1D character suppresses the nesting effect and hardens the corresponding phonon modes, which should lead to a 1D conductor in Ba₃HfSe₅. For example, La₃TiBi₅ and La₃TiSb₅ were demonstrated to possess similar electronic structures with 3D Fermi surfaces and exhibit metallic behaviors derived from the La3+ ions that are not perfectly ionic. 6,13 In the Ba₃MCh₅ (M = metal and Ch = S, Se, and Te) system, the semiconducting behaviors were revealed by the past research in the Ba_3MCh_5 (M = metal ions and Sn and Ch = S, Se, and Te). 3,15-18,39 First, the 1D conducting behavior can be easily damaged by Umklapp scattering that induces an Umklapp gap, as observed in Ba₃TiTe₅ and also in the present Ba₃HfSe₅. For Ba₁₂Ti₄Se₂₀ and Ba₉Zr₃Se₁₅, the semiconductor behavior is mainly related to the structure distortion that derives from the nesting of the Fermi surface. In addition, in the 1D material, the electronic hopping between interchains plays the dominant role in the electronic transport property and is closely related to the band gap. The Ba²⁺ ions in the Ba₃MCh₅ system with a larger radius compared to La³⁺ are possibly responsible for the semiconducting behaviors. As shown in Figure 3c, the distance between interchains increases from 9.5304(8) Å for $Ba_{12}Ti_4Se_{20}$, a = 9.5677(2) for $Ba_9Zr_3Se_{15}$ to a = 9.5756(1) for Ba_3HfSe_5 in sequence, which will cause less electron hopping and thereby a larger band gap. In addition, the disorder induced by the vacancy in the 1D system tends to localize the electrons. As mentioned above, the structural distortion stabilizes the crystal structure, resulting in the ~20% vacancy in $Ba_{12}Ti_4Se_{20}$, while only ~60% Hf occupancy in Ba₃HfSe₅ was proved. Our experimental results found that the band gap increases and keeps a consistent trend with the quantity of vacancy and interchain's distances in the Ba₃MSe₅ (M = Ti, Zr, and Hf) system, as shown in Figure 3c. Therefore, a conclusion that the vacancyinduced disorder and decreased electronic hopping between interchains together dominate the electronic transport behavior in our synthesized Ba₃MSe₅ (M = Ti, Zr, and Hf) is obtained.

CONCLUSION

The 1D Ba₃MSe₅ (M = Ti, Zr, and Hf) materials were synthesized for the first time. The superlattice distortion along the 1D chains for the Ba₃MSe₅ (M = Ti, Zr, and Hf) system was identified by combining powder diffraction and theoretical calculation techniques. The detailed structural analysis and band gap measurement revealed the disorder induced by the vacancy on the M sites, and the decreased electronic hopping between interchains in the Ba₃MSe₅ (M = Ti, Zr, and Hf) 1D system may dominate the electronic transport. The character vector of the structural distortion was quantitatively related to the nesting vector in the Fermi surface, characterizing Ti, Zr, and Hf selenides as average tetramerization, trimerization, and the primitive structure, respectively, as the central metal ions M evolve from the 3d to the 5d period. These findings extend the 1D material system and, more importantly, provide an alternative candidate solution for identifying complex 1D superlattices when single-crystal samples are absent. The evolution of physical properties of 1D materials under high pressure is interesting, including 1D-3D structure transition, pressure-induced charge density wave, superconductivity, etc. Further research is in progress.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.inorgchem.5c00948.

Additional experimental details and methods, including crystallographic data and magnetic properties of Ba₃MSe₅ (M = Ti, Zr, and Hf) (PDF)

AUTHOR INFORMATION

Corresponding Authors

Jianfeng Zhang — Center for High Pressure Science & Technology Advanced Research, 100094 Beijing, China; orcid.org/0000-0001-7922-0839; Email: jianfeng.zhang@hpstar.ac.cn

Tingjiang Yan — Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China; ⊚ orcid.org/0000-

0003-1328-3540; Email: tingjiangn@163.com

Jun Zhang — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physics, University of Chinese Academy of Sciences, Beijing 100190, China; orcid.org/0000-0002-9980-9074; Email: zhang@

orcid.org/0000-0002-9980-9074; Email: zhang@iphy.ac.cn

Changqing Jin — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physics, University of Chinese Academy of Sciences, Beijing 100190, China; Email: jin@iphy.ac.cn

Authors

Zelong Wang — Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China

Guodong Wang – Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China Wenmin Li – Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China

Zhe Wang – College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China

Runteng Chen – Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

Lei Duan − Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; orcid.org/0000-0002-1254-0317

Jianfa Zhao — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physics, University of Chinese Academy of Sciences, Beijing 100190, China; orcid.org/0000-0002-7507-9441

Zheng Deng — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physics, University of Chinese Academy of Sciences, Beijing 100190, China

Xiancheng Wang — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physics, University of Chinese Academy of Sciences, Beijing 100190, China; orcid.org/0000-0001-6263-4963

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.inorgchem.5c00948

Author Contributions

[#]Z.W., G.W., and W.L. contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The present work was supported by the National Key R&D Program of China and the Natural Science Foundation of China under Grants Nos. 12104488, 2023YFA1406001, 2024YFA1408000, and 12474097.

REFERENCES

- (1) dos Santos, C. A. M.; White, B. D.; Yu, Y. K.; Neumeier, J. J.; Souza, J. A. Dimensional crossover in the purple bronze $\rm Li_{0.9}Mo_6O_{17}$. *Phys. Rev. Lett.* **2007**, 98 (26), 266405.
- (2) Petrović, A. P.; Ansermet, D.; Chernyshov, D.; Hoesch, M.; Salloum, D.; Gougeon, P.; Potel, M.; Boeri, L.; Panagopoulos, C. A disorder-enhanced quasi-one-dimensional superconductor. *Nat. Commun.* **2016**, *7*, 12262.
- (3) Zhang, J.; Jia, Y. T.; Wang, X. C.; Li, Z.; Duan, L.; Li, W. M.; Zhao, J. F.; Cao, L. P.; Dai, G. Y.; Deng, Z.; Zhang, S. J.; Feng, S. M.; Yu, R. Z.; Liu, Q. Q.; Hu, J. P.; Zhu, J. L.; Jin, C. Q. A new quasi-one-dimensional compound Ba₃TiTe₅ and superconductivity induced by pressure. *NPG Asia Mater.* **2019**, *11* (1), 60.
- (4) Bollore, G.; Ferguson, M. J.; Hushagen, R. W.; Mar, A. New ternary rare-earth transition-metal antimonides RE_3MSb_5 (RE = La, Ce, Pr, Nd, Sm; M = Ti, Zr, Hf, Nb). *Chem. Mater.* **1995**, 7 (12), 2229–2231.
- (5) Ferguson, M. J.; Hushagen, R. W.; Mar, A. Crystal structures of La₃ZrSb₅, La₃HfSb₅, and LaCrSb₃. Structural relationships in ternary rare-earth antimonides. *J. Alloys Compd.* **1997**, 249 (1–2), 191–198.
- (6) Murakami, T.; Yamamoto, T.; Takeiri, F.; Nakano, K.; Kageyama, H. Hypervalent Bismuthides La₃MBi₅ (M = Ti, Zr, Hf) and Related Antimonides: Absence of Superconductivity. *Inorg. Chem.* **2017**, *56* (9), 5041–5045.

- (7) Duan, L.; Zhang, J.; Wang, X. C.; Zhao, J. F.; Cao, L. P.; Li, W. M.; Deng, Z.; Yu, R. Z.; Li, Z.; Jin, C. Q. High-pressure synthesis, structure and properties of new ternary pnictides La_3TiX_5 (X = P, As). *J. Alloys Compd.* **2020**, 831, 154697.
- (8) Duan, L.; Wang, X. C.; Zhan, F. Y.; Zhang, J.; Hu, Z. W.; Zhao, J. F.; Li, W. M.; Cao, L. P.; Deng, Z.; Yu, R. Z.; Lin, H. J.; Chen, C. T.; Wang, R.; Jin, C. Q. High-pressure synthesis, crystal structure and physical properties of a new Cr-based arsenide La₃CrAs₅. *Sci. China Mater.* **2020**, 63 (9), 1750–1758.
- (9) Duan, L.; Wang, X. C.; Zhang, J.; Hu, Z.; Zhao, J. F.; Feng, Y. G.; Zhang, H. L.; Lin, H. J.; Chen, C. T.; Wu, W.; Li, Z.; Wang, R.; Zhang, J. F.; Xiang, T.; Jin, C. Q. Synthesis, structure, and magnetism in the ferromagnet La₃MnAs₅: Well-separated spin chains coupled via itinerant electrons. *Phys. Rev. B* **2022**, *106* (18), 184405.
- (10) Duan, L.; Wang, X. C.; Zhang, J.; Zhao, J. F.; Zhao, Z. W.; Xiao, C.; Guan, C.; Wang, S.; Shi, L.; Zhu, J.; Jin, C. Critical behavior of the ferromagnetic metal La₃CrAs₅ with quasi-one-dimensional spin chains. *J. Alloys Compd.* **2022**, 905, 164214.
- (11) Mar, A.; Tougait, O.; Potel, M.; Noel, H.; Lopes, E. B. Anisotropic transport and magnetic properties of ternary uranium antimonides U₃ScSb₅ and U₃TiSb₅. *Chem. Mater.* **2006**, *18* (18), 4533–4540.
- (12) Tkachuk, A. V.; Muirhead, C. P. T.; Mar, A. Structure and physical properties of ternary uranium transition-metal antimonides U_3MSb_5 (M = Zr, Hf, Nb). *J. Alloys Compd.* **2006**, 418 (1–2), 39–44.
- (13) Moore, S. H. D.; Deakin, L.; Ferguson, M. J.; Mar, A. Physical properties and bonding in RE₃TiSb₅ (RE = La, Ce, Pr, Nd, Sm). *Chem. Mater.* **2002**, *14* (11), 4867–4873.
- (14) Almoussawi, B.; Tomohiri, H.; Kageyama, H.; Kabbour, H. High pressure synthesis of the spin chain sulfide $Ba_9V_3S_{11}(S_2)_2$. Eur. J. Inorg. Chem. **2021**, 2021, 1271–1277.
- (15) Zhang, J.; Liu, M.; Wang, X. C.; Zhao, K.; Duan, L.; Li, W.; Zhao, J.; Cao, L. P.; Dai, G. Y.; Deng, Z.; Feng, S.; Zhang, S.; Liu, Q. Q.; Yang, Y. F.; Jin, C. Q. Ba₉V₃Se₁₅: a novel compound with spin chains. *J. Phys.: Condens. Matter* **2018**, *30*, 214001.
- (16) Zhang, J.; Zhang, X. Y.; Xia, Y. H.; Zhao, J. F.; Duan, L.; Wang, G. D.; Min, B. S.; Cao, H. B.; Dela Cruz, C. R.; Zhao, K.; Sun, H. Y.; Zhu, J. L.; Zhang, J. F.; Xiang, T.; Wang, X. C.; Jin, C. Q. Structure and magnetic properties of Ba₉V₃Te₁₅ with ferromagnetic spin chains. *Phys. Rev. B* **2023**, *108* (17), 174423.
- (17) Zhang, J.; Komarek, A. C.; Jin, M. L.; Wang, X. C.; Jia, Y. T.; Zhao, J. F.; Li, W. M.; Hu, Z. W.; Peng, W.; Wang, X.; Tjeng, L. H.; Deng, Z.; Yu, R.; Feng, S. M.; Zhang, S. J.; Liu, M.; Yang, Y. F.; Lin, H. J.; Chen, C. T.; Li, X. D.; Zhu, J. L.; Jin, C. Q. High-pressure synthesis, crystal structure, and properties of iron-based spin-chain compound Ba₉Fe₃Se₁₅. *Phys. Rev. Mater.* **2021**, *5* (5), 054606.
- (18) Zhang, J.; Wang, X. C.; Zhou, L.; Liu, G. X.; Adroja, D. T.; da Silva, I.; Demmel, F.; Khalyavin, D.; Sannigrahi, J.; Nair, H. S.; Duan, L.; Zhao, J. F.; Deng, Z.; Yu, R. Z.; Shen, X.; Yu, R. C.; Zhao, H.; Zhao, J. M.; Long, Y. W.; Hu, Z. W.; Lin, H. J.; Chan, T. S.; Chen, C. T.; Wu, W.; Jin, C. Q. A ferrotoroidic candidate with well-separated spin chains. *Adv. Mater.* 2022, 34 (12), 2106728.
- (19) Jenks, J. M.; Hoggins, J. T.; Rendondiazmiron, L. E.; Cohen, S.; Steinfink, H. Octahedrally Coordinated Iron in Ba-Fe-S system: $Ba_9Fe_3S_{11}(S_2)_2$, a High-Pressure Polymorph of Ba_3FeS_5 . *Inorg. Chem.* **1978**, *17* (7), 1773–1775.
- (20) Duan, L.; Chen, X.; Wang, Z.; Wei, Y.; Zhang, J.; Feng, Y.; Wang, S.; Du, S.; Zhao, Z.; Xiao, C.; Wang, X.; Jin, C. High-pressure synthesis, structure and physical properties of two quasi-one-dimensional compounds Ba₉Nb_{2.54}Te₁₅ and Ba₉Ta_{1.89}Te₁₅. *J. Alloys Compd.* **2024**, 1007, 176496.
- (21) Duan, L.; Wang, X. C.; Zhang, J.; Zhao, J. F.; Li, W. M.; Cao, L. P.; Zhao, Z. W.; Xiao, C. J.; Ren, Y.; Wang, S.; Zhu, J. L.; Jin, C. Q. Doping effect on the structure and physical properties of quasi-one-dimensional compounds $Ba_9Co_3(Se_{1-x}S_x)_{15}$ (x = 0 0.2). Chin. Phys. B **2021**, 30 (10), 106101.
- (22) Zhang, J.; Duan, L.; Wang, Z.; Wang, X. C.; Zhao, J. F.; Jin, M. L.; Li, W. M.; Zhang, C. L.; Cao, L. P.; Deng, Z.; Hu, Z. W.; Agrestini, S.; Valvidares, M.; Lin, H. J.; Chen, C. T.; Zhu, J. L.; Jin, C. Q. The

- synthesis of a quasi-one-dimensional iron-based telluride with antiferromagnetic chains and a spin glass state. *Inorg. Chem.* **2020**, 59 (8), 5377–5385.
- (23) Zhang, J.; Jin, M. L.; Li, X.; Wang, X. C.; Zhao, J. F.; Liu, Y.; Duan, L.; Li, W. M.; Cao, L. P.; Chen, B. J.; Wang, L. J.; Sun, F.; Wang, Y. G.; Yang, L. X.; Xiao, Y. M.; Deng, Z.; Feng, S. M.; Jin, C. Q.; Zhu, J. L. Structure-spin-transport anomaly in quasi-1-dimensional Ba₉Fe₃Te₁₅ under high pressure. *Chin. Phys. Lett.* **2020**, *37*, 087106.
- (24) Zhang, J.; Su, R.; Wang, X. C.; Li, W. M.; Zhao, J. F.; Deng, Z.; Zhang, S. J.; Feng, S. M.; Liu, Q. Q.; Zhao, H. Z.; Guan, P. F.; Jin, C. Q. Synthesis, crystal structures, and electronic properties of one dimensional $Ba_0Sn_3(Te_{1-x}Se_x)_{15}$ (x=0-1). *Inorg. Chem. Front.* **2017**, 4 (8), 1337–1343.
- (25) Zhang, J.; Wang, X.; Hao, Y.; Liu, G.; Zhou, L.; Pajerowski, D. M.; Wang, J.-T.; Zhu, J.; Zhao, J.; Wang, J.; Zhao, Y.; Duan, C.; Long, Y.; Kang, C.-J.; Greenblatt, M.; Jin, C. Ferroelectricity driven by magnetism in quasi-one-dimensional Ba₉Fe₃Se₁₅. *arXiv* 2022, arXiv:2207.10834.
- (26) Hor, P. H.; Fan, W. C.; Chou, L. S.; Meng, R. L.; Chu, C. W.; Tarascon, J. M.; Wu, M. K. Study of the metal-semiconductor transition in Rb₂Mo₆Se₆, Rb₂Mo₆Te₆ and Cs₂Mo₆Te₆ under pressures. *Solid State Commun.* **1985**, 55 (3), 231–235.
- (27) Johannes, M. D.; Mazin, I. I. Fermi surface nesting and the origin of charge density waves in metals. *Phys. Rev. B* **2008**, 77 (16), 165135.
- (28) Giamarchi, T. Umklapp Process and Resistivity in One-Dimensional Fermion Systems. *Phys. Rev. B* **1991**, 44 (7), 2905–2913.
- (29) Vescoli, V.; Degiorgi, L.; Henderson, W.; Gruner, C.; Starkey, K. P.; Montgomery, L. K. Dimensionality-driven insulator-to-metal transition in the Bechgaard salts. *Science* **1998**, *281* (5380), 1181–1184
- (30) larson, A. C.; VON Dreele, R. B. General Structure Analysis System (GSAS); Los Alamos National Laboratory Report Laur, 2000; pp 86–748.
- (31) Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. *Phys. Rev. B* **1964**, *136* (3b), B864–B871.
- (32) Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. *Phys. Rev.* **1965**, *140* (4a), A1133–A1138.
- (33) Giustino, F. Electron-phonon interactions from first principles. *Rev. Mod. Phys.* **2017**, *89* (1), 015003.
- (34) Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. *Rev. Mod. Phys.* **2001**, *73* (2), 515–562.
- (35) Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; Dal Corso, A.; de Gironcoli, S.; Fabris, S.; Fratesi, G.; Gebauer, R.; Gerstmann, U.; Gougoussis, C.; Kokalj, A.; Lazzeri, M.; Martin-Samos, L.; Marzari, N.; Mauri, F.; Mazzarello, R.; Paolini, S.; Pasquarello, A.; Paulatto, L.; Sbraccia, C.; Scandolo, S.; Sclauzero, G.; Seitsonen, A. P.; Smogunov, A.; Umari, P.; Wentzcovitch, R. M. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. *J. Phys.: Condens. Matter* **2009**, *21* (39), 395502.
- (36) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **1996**, 77 (18), 3865–3868.
- (37) Mostofi, A. A.; Yates, J. R.; Pizzi, G.; Lee, Y. S.; Souza, I.; Vanderbilt, D.; Marzari, N. An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions. *Comput. Phys. Commun.* **2014**, *185* (8), 2309–2310.
- (38) Dong, C. Powder X Powder Diffraction Analysis Software (beta version). http://www.ccp14.ac.uk.
- (39) Duan, L.; Wang, X. C.; Zhang, J.; Zhao, J. F.; Cao, L. P.; Li, W. M.; Yu, R. Z.; Deng, Z.; Jin, C. Q. Synthesis, structure, and properties of $Ba_9Co_3Se_{15}$ with one-dimensional spin chains. *Chin. Phys. B* **2020**, 29 (3), 036102.