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ABSTRACT
We report the studies of structure and properties of a quasi-one-
dimensional (quasi-1D) compound BaTiS3 under pressure. The
poly-crystalline samples are synthesized by solid-state reaction
method and single-crystalline samples are produced by chemical
vapor transport method. The XRD measurement under ambient
pressure confirms the hexagonal structure, which consists of face-
sharing octahedral TiS6 chains along c-axis and displays a quasi-
1D feature. When applying pressure, the synchrotron X-ray
diffraction experiments show that the sample undergoes a phase
transition from hexagonal phase to orthorhombic phase at
around 10 GPa due to the zig–zag deformation of TiS6 chains,
while the quasi-1D structure is reserved. At ambient pressure,
BaTiS3 exhibits an insulating behavior with a band gap about
0.273 eV. When applying pressure, the sample undergoes a
crossover from insulator to metal due to the enhancement of
inter-chain electron hopping.
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1. Introduction

The quasi-one-dimensional (quasi-1D) system exhibits various unique physical phenom-
ena and attracted much research interest due to its low dimensional features. In a
quasi-1D conducting system, the Umklapp scattering would have significant impact on
the electronic transport and lead to a metal-insulator transition (MIT) [1], and the MIT
temperature is dependent on the inter-chain electron hopping [2,3]. As the increase of
inter-chain electron hopping, the transition temperature from metallic state to Mott insu-
lating state is gradually suppressed, after which the quasi-1D conducting system would
be transformed into three-dimensional metal. During the crossover from 1D to three-
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dimensional (3D) metal, some exotic phenomena may occur, such as charge density wave
and superconductivity. This process has been widely investigated in many quasi-1D con-
ducting compounds. For example, Li0.9Mo6O17 undergoes a dimensional crossover from
quasi-1D conductor to a 3D metal at about 24 K. This crossover in dimensionality desta-
bilizes the Luttinger-liquid fixed point and induces an electronic charge (spin) density
wave. While further deceasing the temperature, superconductivity can be observed at
1.9 K [3–5].

Another quasi-1D conducting system is ABX3(A is Ba/Sr, B is Ti/Zr/Hf and X is S/Se) [6–
13]. They exhibit a hexagonal crystal structure with space group of P63/mmc. In this
structure, the face-sharing octahedral BX6 chains are parallel aligned along the c-axis
and form a triangular lattice in ab-plane. The large A atoms separate the BX6 chains
and resulting in a quasi-1D feature. It has been theoretically predicted that BaTiS3 has
a typical 1D electron band structure crossing the Fermi surface [14,15]. It should be a
metal while it displays insulating behavior under ambient pressure due to the
Umklapp scattering effect. Recently, single-crystalline BaTiS3 with millimeter-size has
been successfully synthesized through chemical vapor transport method with iodine
as a transport agent [10,11]. The anisotropic crystal structure and properties indicated
that the electron hopping between TiS6 chains is much weaker than that of intra-
chains. Thus, BaTiS3 is a good platform for us to manipulate the inter-chain hopping
through applying pressure and explore the 1D related physical phenomena. In this
work, we synthesized both poly-crystalline and single-crystalline samples of BaTiS3
and measured its crystal structure and transport properties under pressure. A phase
transition is observed under high pressure, and the MIT due to the Umklapp scattering
effect can be completely suppressed above 20 GPa.

2. Materials and methods

2.1. Material synthesis

Poly-crystalline samples BaTiS3 were prepared by conventional solid-state reaction
method. High purity BaS powder (99.2%), Ti powder (99.99%) and S powder (99.99%)
were well mixed according to the stoichiometric ratio and pressed into pellets. Then
the pellets were placed into alumina crucibles and sealed in evacuated silica tubes. The
pellets were heated to 700◦C and held for 20 h before cooling to room
temperature. After heating, the poly-crystalline sample BaTiS3 can be obtained. Single
crystals of BaTiS3 were prepared by chemical vapor transport method with iodine as a
transport agent. Details of growth method can be seen in [10].

2.2. Experimental characterization

2.2.1. Characterization at ambient pressure
The powder X-ray diffraction was conduct on a Rigaku Ultima diffractometer with mono-
chromatic Cu−Ka1 radiation. The single-crystal X-ray diffraction was conduct on a Bruker
D8 VENTURE diffractometer with monochromatic Mo−Ka1 radiation. The energy-disper-
sive X-ray spectroscopy (EDX) measurement was carried out on a spectrometer (Model
EDAX GENESIS XM2 SYSTEM 60x) equipped with a field-emission scanning electron
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microscope (Hitachi S-4800). The electrical resistivity was measured on poly-crystalline
sample using the typical four-probe method. The DC magnetization measurement was
conducted on a Quantum Design Magnetic Property Measurement System (MPMS).

2.2.2. Characterization at high pressure
In-situ high pressure angle-dispersive X-ray diffraction measurements were performed at
the Beijing Synchrotron Radiation Facility. The X-ray wavelength was 0.6199 Å. A sym-
metric diamond anvil cell was adopted with the diamond culet being 300m in diameter.
A prepressed T301 stainless-steel was used as the gasket, and a hole of 150m in diameter
was drilled as the high pressure chamber. The sample in the chamber was finely grounded
poly-crystalline powder and silicon oil was used as the pressure-transfer medium. For the
high pressure resistance measurements, a diamond anvil cell made of nonmagnetic BeCu
alloy was adopted. The T301 stainless-steel gasket was covered by an insulating layer of c-
BN powder. NaCl powder was put into the gasket as the pressure-transfer medium (PTM)
for transport measurements, which is commonly used although it is non-hydro-
static [16,17]. Single-crystal of BaTiS3 was used for the high pressure resistance exper-
iments. The pressure was calibrated by the shift of the fluorescence R1 peak of
ruby [18] near samples at room temperature for all the experiments.

3. Results and discussion

3.1. Physical characterization under ambient pressure

Figure 1(a) shows the X-ray diffraction pattern of poly-crystalline BaTiS3. All the peaks can
be indexed by a hexagonal structure with lattice parameters a = b = 6.765(2) Å and
c = 5.793(3) Å. The Rietveld refinements for the X-ray diffraction data has been carried
out by using GSAS-II software package [19]. By using the space group of P63/mmc as
the initial model, the refinements were successfully conducted and smoothly converged
to Rp = 5.1% and Rwp = 6.7%, indicating a good fitting. The obtained crystallographic
data are summarized in Table S1. The quality of single-crystal BaTiS3 was determined
by EDX and single-crystal XRD. Figure 1(e) shows the EDX spectroscopy measurement
results. The synthesized BaTiS3 single crystals are needle-like in shape with a typical
size of 3mm× 5m× 5m. The averaged atomic ratio of Ba : Ti : S determined from
EDXs is about 1.00(0) : 0.98(3) : 3.07(5), which is close to the stoichiometric ratio within
the error range. The single-crystal XRD data were also collected with the sample shown
in Figure S1, and the refinement smoothly converged to F2 = 1.170, R1 = 2.6% and
wR2 = 6.3% with a model of hexagonal crystal structure (P63/mmc). The refinement
results are summarized in Tables 1 and S2. The obtained lattice constants are
a = b = 6.7670(9) Å and c = 5.8117(8) Å, coincided with the results of poly-crystalline
samples.

Figure 1(c,d) shows a sketch of the crystal structure of BaTiS3 in a top and side views,
respectively. We can see that the structure consists of the face-sharing octahedral TiS6
chains along c-axis, which form the triangular lattice in ab-plane and are separated by
Ba atoms. The nearest Ti–Ti distance in a TiS6 chain is c/2 = 2.906 Å, much smaller
than that of inter-chains given by a = 6.767 Å, thus displaying a quasi-1D structure.
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Figure 1(b) shows the temperature dependence of resistivity of poly-crystalline BaTiS3.
The resistivity increases with decreasing temperature, showing an insulating behavior.
The insert shows the plot of ln(ρ) versus the reverse of temperature, which displays
nearly linear dependence. Hence, the resistivity should follow the Arrhenius law. By
fitting the plots with formula r/ exp (Dg/2kBT) (Dg is the band gap and kB is the Boltz-
mann constant), the band gap is estimated to be 0.273 eV. The insulating behavior is
quite common in the quasi-1D conducting system and can be attributed to the
Umklapp scattering effect, which usually can induce a metal-insulator transition [20–23].

3.2. High pressure synchrotron X-ray diffraction

To exam the structure stability and evolution of BaTiS3 under high pressure, we conduct
the in-situ high pressure angle-dispersive X-ray diffraction measurement on BaTiS3
powders at room temperature. Figure 2(a) shows the XRD patterns measured under

Figure 1. (a) The X-ray diffraction patterns and Rietveld refinement of poly-crystalline BaTiS3. (b) The
temperature dependence of resistivity of poly-crystalline BaTiS3. The inset shows the plot of ln(ρ)
versus the reverse of temperature. (c,d) The sketch of the hexagonal crystal structure in a top and
side views, respectively. (e) Energy-dispersive X-ray spectrum for a BaTiS3 single crystal.
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Table 1. Crystallographic data for hexagonal and orthorhombic phase of BaTiS3.
BaTiS3 (single-crystal, ambient pressure) BaTiS3 (poly-crystal, 29.9 GPa)

Space group: P63/mmc Space group: Cmc21

a = b = 6.7670(9) Å, c = 5.8117(8) Å, a = b = 90◦ , g = 120◦ a = 6.254(8) Å, b = 10.565(9) Å, c = 5.349(5) Å, a = b = g = 90◦

R1 = 2.6% and wR2 = 6.3% Rp = 6.8% and Rwp = 9.7%

Atom fraction x y z U Atom fraction x y z U

S 1 0.66803 −0.16602 0.25000 0.0403 S2 1 0.27801 0.41995 0.02862 0.0135
Ba 1 0.66667 0.33333 0.25000 0.0295 Ti 1 0.00000 0.02598 0.25222 0.0228
Ti 1 1.00000 0.00000 0.50000 0.0731 S1 1 0.00000 0.16289 0.01313 0.0374

Ba 1 0.00000 0.33529 0.50715 0.0260
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hexagonal phase

Figure 2. (a) The XRD patterns measured under different pressures. (b) The pressure dependence of
crystal lattice constants. (c) The α (the angle of Ti-Ti-Ti in a TiS6 chain) versus pressure plots. (d) The
pressure versus cell volume plots and the fitting using Birch–Murnaghan equation. (e)(f) The refine-
ment results of the XRD patterns measured under 29.9 GPa using the hexagonal and orthorhombic
crystal structure, respectively.(g)(h) The sketch of the orthorhombic crystal structure of BaTiS3 in a
top and side views, respectively.
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different pressures. Within the highest experimental pressure of 59.4 GPa, all the peaks
shift gradually to the high angle region while increasing pressure and no new peaks
were found, indicating the shrink of lattice under pressure. We try to use the space
group of P63/mmc as the initial model to carry out the refinements. This model works
well in the low-pressure region. However, the positions of the calculated peaks gradually
show mismatch with the positions of the observed peaks measured at high pressures, as
seen in Figure 2(e). We note that BaVS3, which shares the same crystal structure with
BaTiS3 at room temperature, undergoes a transition from hexagonal to orthorhombic
structure (space group of Cmc21) with decreasing temperature [24,25]. Similar phase tran-
sition has also been observed in BaVSe3 [26]. Usually, the low-temperature phase can be
realized by applying high pressure at room temperature as seen in NaBH4 [27]. Thus, we
use the low-temperature phase of BaVSe3 as the initial structure model to carry out the
refinements for the high pressure X-ray diffraction data, and the refinements converge
to reasonable R-values of Rp = 6.8% and Rwp = 9.7%. The obtained crystallographic
data for BaTiS3 with orthorhombic phase are summarized in Table 1. In Figure 2(e,f), as
an example, we show the refinement results of the data measured under 29.9 GPa
using the hexagonal and orthorhombic structure, respectively. Apparently, the latter
shows a better fitting.

Figure 2(g,h) shows the sketch of the orthorhombic crystal structure of BaTiS3 in a top
and side views, respectively. Compared with the hexagonal structure, they are nearly the
same except for the distortion of the TiS6 chains. That is, in the hexagonal structure, the
Ti atoms located exactly along the c-axis in a TiS6 chain; while in the orthorhombic
crystal structure, the Ti atoms exhibit a zig–zag like chain, while the quasi-1D structure
is reserved. Thus, the hexagonal structure can be viewed as a specialized orthorhombic
structure with a = 180◦ (the angle of Ti–Ti–Ti in a TiS6 chain). To describe the distortion
under different pressures, we did the refinements with orthorhombic crystal structure
for all the data measured under pressures. Figure 2(c) shows the pressure dependence
of α. The value of α is quite close to 180◦ with pressure lower than 9.7 GPa, while it
decreases quickly when the pressure exceeds 9.7 GPa and finally converged to about
157◦, indicating that a phase transition happens at about 10 GPa. The pressure depen-
dences of lattice constants and volume are also shown in Figure 2(b,d). The lattice con-
stants decrease with increasing pressure and are compressed by about 11.3% and
11.7% for a and c within 59.4 GPa, respectively, indicating an isotopic compression.
Especially, the decrease of a, which is equal to the distance between nearest TiS6
chains, suggests an enhancement of the inter-chain electron hopping. In Figure 2(d),
the pressure versus volume is also plotted and fitted by Birch–Murnaghan equation
P(GPa) = 3/2× B0[(V0/V)

7/3 − (V0/V)
5/3]× {1− (3− 3/4× B′0)× [(V0/V)

2/3 − 1]} with B′0
fixed as 4, giving a bulk modulus of B0h � 61 GPa for the low-pressure hexagonal
phase and B0o � 66GPa for the high pressure orthorhombic phase.

3.3. High pressure transport properties

Figure 3(a–c) shows the temperature dependence of resistance measured along the c-axis
of single-crystalline BaTiS3 sample under different pressures with temperature down to 2
K. At 3.0 GPa, the resistance decreases with increasing temperature, demonstrating an
insulating behavior in the measured temperature range. While for the data measured
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under 5.9 GPa, it shows a metallic behavior at high temperature and a MIT transition
occurs at about 170 K. Further increasing pressure, this MIT temperature is gradually sup-
pressed as can be clearly seen in Figure S2, and it becomes a complete metal above 20
GPa. Within the pressure of 48 GPa, no superconductivity is observed above 2 K. Theoreti-
cal studies have revealed that BaTiS3 is a typical 1D metal along the c-axis [14,15], while an
insulating behavior measured along the c -axis is observed at low pressures. It implies that
the Umklapp scattering effect has played a key role for the MIT. When the applied
pressure increases, the distance between the conducting chains of TiS6 is gradually
decreased, which should enhance the electron hopping between the conducting
chains and weaken the Umklapp scattering effect. Thus, the suppression of MIT by
pressure demonstrates an intrinsic property for BaTiS3 with 1D conducting chains.

4. Conclusions

In conclusion, we have prepared both the poly-crystalline and single-crystalline samples of
BaTiS3. At ambient pressure, it has a hexagonal crystal structure, which consists of well sep-
arated face-sharing octahedral TiS6 chains and exhibits a quasi-1D structure characteristic.
The resistivity measurement at ambient pressure confirms the insulating behavior with a
band gap about 0.273 eV. When applying pressure, BaTiS3 undergoes a phase transition
from hexagonal phase to orthorhombic phase at around 10 GPa due to the zig–zag defor-
mation of TiS6 chains. The quasi-1D structure is reserved and the distance between TiS6

Figure 3. (a–c) Temperature dependence of the resistance measured under different pressures.
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chains decreases with increasing pressure, indicating the enhancement of the inter-chain
electron hopping. With increasing pressure, the resistance shows metal to insulator tran-
sition and the MIT temperature gradually decreases, and a complete metallic behavior
can be realized above 20.3 GPa, which demonstrates an intrinsic property for BaTiS3 with
1D conducting chains.
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