Sequential Spin State Transition and Intermetallic Charge Transfer in PbCoO$_3$

Zhehong Liu, Yuki Sakai, Junye Yang, Wenmin Li, Ying Liu, Xubin Ye, Shijun Qin, Jinming Chen,* Stefano Agrestini, Kai Chen, Sheng-Chieh Liao, Shu-Chih Haw, Francois Baudelet, Hirofumi Ishii, Takumi Nishikubo, Hayato Ishizaki, Tatsuru Yamamoto, Zhao Pan, Masayuki Fukuda, Kotaro Ohashi, Kana Matsuno, Akihiko Machida, Tetsu Watanuki, Saori I. Kawaguchi, Angel M. Arevalo-Lopez, Changqing Jin, Zhiwei Hu, J. Paul Attfield, Masaki Azuma,* and Youwen Long*

Cite This: J. Am. Chem. Soc. 2020, 142, 5731−5741

ABSTRACT: Spin state transitions and intermetallic charge transfers can essentially change material structural and physical properties while excluding external chemical doping. However, these two effects have rarely been found to occur sequentially in a specific material. In this article, we show the realization of these two phenomena in a perovskite oxide PbCoO$_3$ with a simple ABO$_3$ composition under high pressure. PbCoO$_3$ possesses a peculiar A- and B-site ordered charge distribution Pb$^{2+}$Pb$^{4+}$3Co$^{2+}$2Co$^{3+}$2O$_{12}$ with insulating behavior at ambient conditions. The high spin Co$^{2+}$ gradually changes to low spin with increasing pressure up to about 15 GPa, leading to an anomalous increase of resistance magnitude. Between 15 and 30 GPa, the intermetallic charge transfer occurs between Pb$^{4+}$ and Co$^{2+}$ cations. The accumulated charge-transfer effect triggers a metal−insulator transition as well as a first-order structural phase transition toward a Tetra.-I phase at the onset of ∼20 GPa near room temperature. On further compression over 30 GPa, the charge transfer completes, giving rise to another first-order structural transformation toward a Tetra.-II phase and the reentrant electrical insulating behavior.

1. INTRODUCTION

Transition-metal oxides exhibit a wide variety of intriguing physical properties and versatile functionalities such as ferroelectricity, ferromagnetism, catalysis, superconductivity, colossal magnetoresistance, magnetoelectric multiferroicity, etc. All these properties are closely related to the d-electron configurations of transition metals which involve the number of unpaired d-electrons as well as the detailed electronic distributions at different orbitals. Chemical substitution is a widely used method to modify the electronic configurations and thereby manipulate materials structures and properties. However, the external element doping may inevitably cause some inhomogeneous chemical disorders, which are unfavorable to understanding the intrinsic physical properties. On the other hand, there exist some “internal” effects that can also change the electronic configurations without the introduction of any doping element. A spin state transition is a typical example of one of these effects. As is well-known, on heating, the spin state of Co$^{3+}$ in LaCoO$_3$ gradually changes from low spin (LS) to high spin (HS) via a possible intermediate spin (IS) state, accompanied by magnetic and electrical transport variations. Some other compounds containing Mn, Fe, and Co also show spin state transitions by changing the environment conditions such as temperature, pressure, and/or light radiation, etc.

Intermetallic charge transfer is a more interesting manner to change the electronic configurations without introducing external element. In sharp contrast to spin state transitions, which only change the electronic states for a single cation, intermetallic charge transfer takes place between two different metals so that much more drastic variations in structure, magnetism, and electrical transport properties are expected to jointly occur. Compared with a spin state transition, intermetallic charge transfer is only observed in a few transition-metal oxides. An interesting example is La-Cu$_3$Fe$_2$O$_{12}$, where Cu−Fe intermetallic charge transfer occurs on heating to 393 K or pressuring to 3.6 GPa at room
temperature (RT), resulting in the change of charge combination from \(\text{LaCu}^{3+}_{2}\text{Fe}^{3+}_{3}\text{O}_{12} \) to \(\text{LaCo}^{2+}_{2}\text{Fe}^{3+}_{3}\text{O}_{12} \) accompanied by insulator-to-metal and antiferromagnetism-to-paramagnetism transformations as well as the presence of negative thermal expansion.\(^{27,28}\) Similarly, intermetallic charge transfer is also observed in \(\text{BiNiO}_3 \) between \(\text{Bi} \) and \(\text{Ni} \), causing the charge format change from \(\text{Bi}^{3+}_{0.5}\text{Bi}^{4+}_{0.5}\text{Ni}^{2+}_{2}\text{O}_3 \) to \(\text{Bi}^{3+}_{0.5}\text{Ni}^{3+}_{2}\text{O}_3 \).\(^{29}\)

Although spin state transition and intermetallic charge transfer have received much attention in the past, these two phenomena rarely occur together in a specific material. The only report is in a perovskite oxide family with a complicated composition \((\text{Pr}_{1-x}\text{R}_x)_{0.5}\text{Ca}_{0.5}\text{Co}_3\text{O}_5 \) \((R = \text{Y, Sm})\) composed of mixed \(\text{Co}^{3+}/\text{Co}^{4+} \) and \(\text{Pr}^{3+}/\text{Pr}^{4+} \) states.\(^{30-36}\) The high-pressure synthesized perovskite oxide \(\text{PbCoO}_3 \) provides a unique opportunity for such a discovery in a compound with a simple \(\text{ABO}_3 \) composition. On account of the peculiar \(\text{A-} \) and \(\text{B-site} \) charge orderings, \(\text{PbCoO}_3 \) crystallizes in an \(\text{AA}_{0.5}\text{B}_{0.5}\text{O}_{12} \)-type quadruple perovskite structure (Figure 1) with the charge ratio of 1:2:1 were well mixed in an agate mortar. The mixed powders were then pressed into a gold capsule with 3 mm in diameter and length for further treatment at 12 GPa and 1323 K for 30 min using a Walker-type multianvil high pressure apparatus. When the heating time was finished, the sample was quenched to room temperature, and then the pressure was slowly released to ambient pressure. X-ray powder diffraction was performed to identify the sample quality using a Huber diffractometer (Cu \(K\alpha_2 \) radiation, 40 kV, 30 mA).

The electronic transport properties of \(\text{PbCoO}_3 \) at high pressure were measured using the standard four-probe method with a screw type diamond anvil cell (DAC) made of nonmagnetic Be–Cu alloy as described elsewhere.\(^{40}\) The diamond culet was 300 \(\mu \text{m} \) in diameter, and a T301 stainless steel gasket was preindented from 250 to 40 \(\mu \text{m} \) thickness with a center hole of 150 \(\mu \text{m} \) in diameter. The gasket was then covered by cubic \(\text{BN} \) fine powders to be the insulating layer that, drilled with a 80 \(\mu \text{m} \) diameter hole, served as sample chamber. The \(\text{PbCoO}_3 \) fine powders pressed with a dimension of 50 \(\times \) 50 \(\times \) 10 \(\mu \text{m}^3 \) were loaded with soft NaCl fine powder surrounding as pressure transmitting medium. We used a slim Au wire of 18 \(\mu \text{m} \) diameter as electrodes. Pressures were calibrated by ruby fluorescence shift method for all the DAC-related experiments used in this paper.\(^{41}\) The DAC was placed inside a Mag-Lab system to perform the experiments. A thermometer located around the sample in the DAC was used for monitoring the sample temperature.

High-pressure synchrotron X-ray absorption spectroscopy (XES) and X-ray emission spectroscopy (XAS) results were obtained using DAC techniques at RT. The pressure dependent Co K XAS spectra were measured at the ODE beamline of the synchrotron SOLEIL, France. The Co-metal foil was used as reference for the cobalt chemical shift. The high pressure Co \(K\alpha_2 \) X-ray emission spectra with an overall resolution of ~0.9 eV and high resolution partial fluorescence yield \(\text{Pb} L_3 \) XAS spectra measured at the \(\text{Pb} L_{2,3} \) emission line with an overall resolution of ~2.5 eV were obtained at the Taiwan inelastic X-ray scattering BL12XU beamline at SPring-8 in Japan. The Co K \(\beta \) X-ray emission and \(\text{Pb} L_{2,3} \) emission signals were analyzed with a spectrometer (Johann type) equipped with a spherically bent Ge(444) crystal and Si(555) (radius 1 m), respectively, arranged on a horizontal plane in a Rowland-circle geometry. The strong X-ray absorption of Pb ion leads to relative large error bar in Co \(K\alpha_2 \) X-ray emission spectra of \(\text{PbCoO}_3 \) as compared with that of \(\text{SrCo}_6\text{Ru}_6\text{O}_{19} \).\(^{42}\)

The high-pressure synchrotron X-ray diffraction (SXRD) experiment was performed at beamline BL22XU at SPring-8 by using DACs with rhodium and stainless-steel gaskets. Helium was used as a pressure medium. The wavelengths of 0.4964 and 0.4961 Å were used in the room- and low-temperature experiments, respectively. The RIETAN-FP program was used to analyze the SXRD data.\(^{43}\) Time-of-flight neutron powder diffraction (NPD) data at high pressure and RT conditions were recorded with the instrument PEARL/HIP at the ISIS facility, U.K. About 90 mm\(^3\) of the sample was loaded into a Paris–Edinburgh cell\(^{44}\) with 4:1 methanol–ethanol as a pressure medium and a small pellet of lead as the pressure calibration. Rietveld profile refinements of the structural models were performed with the GSAS software.\(^{45}\)

2. METHODS SECTION

Polycrystalline \(\text{PbCoO}_3 \) samples were prepared at high pressure and high temperature conditions as reported before.\(^{46}\) High purity (>99.9%) \(\text{PbO} \), \(\text{Pb}_2\text{O}_3 \) and \(\text{Co}_2\text{O}_3 \) starting materials with a mole combination of \(\text{Pb}^{2+}\text{Pb}^{4+}\text{Co}^{2+}\text{Co}^{3+}\text{O}_12 \), where the \(\text{Co}^{3+} \) is confirmed to be HS with the spin value \(S = 3/2 \) while \(\text{Co}^{3+} \) is LS with \(S = 0 \).\(^{37}\) The former has a magnetic frustration owing to the tetrahedral arrangement and orders antiferromagnetically below 7.8 K. HS \(\text{Co}^{3+} \) is sensitive to external stimuli like high pressure, at which a HS-LS transition is highly likely to occur, as observed in \(\text{CoO} \) and other \(\text{Co}^{3+}/(\text{HS})-\text{containing compounds} \).\(^{16,38}\) In addition, the 6\(s \) states of \(\text{Pb} \) have similar energy levels as those of the \(d \) orbitals of \(\text{Co} \).\(^{37}\) As a result, moderate stimuli may also trigger the \(\text{Pb}–\text{Co} \) intermetallic charge transfer, causing different charge combination and physical properties.\(^{37,39}\)

In this paper, we report the realization of both spin state transition and intermetallic charge transfer accompanied by double metal–insulator and crystal structure phase transitions in \(\text{PbCoO}_3 \) as evidenced by a series of \(\text{in situ} \) high-pressure measurements including electrical transport, neutron diffraction, synchrotron X-ray diffraction, emission, and absorption spectroscopies.

Figure 1. Schematic crystal structure of both A- and B-site ordered \(\text{PbCoO}_3 \) (\(\text{Pb}^{2+}\text{Pb}^{4+}\text{Co}^{2+}\text{Co}^{3+}\text{O}_12 \)) quadruple perovskite with \(\text{Pn}3 \) symmetry. The corner-sharing \(\text{Co}^{2+}/\text{Co}^{3+} \) octahedra and isolated \(\text{Pb}^{4+} \) squares are shown. Atomic positions are the following: \(\text{Pb}^{2+} 2a (0.5, 0.5, 0.5), \text{Pb}^{4+} 6d (0.5, 0.5, 0) \), \(\text{Co}^{2+} 4b (0.25, 0.25, 0.25) \), \(\text{Co}^{3+} 4c (0.75, 0.75, 0.75) \), \(\text{O}^{2−} 24h (x, y, z) \).

3. RESULTS AND DISCUSSION

Figure 1 shows the schematic crystal structure for the quadruple perovskite oxide \(\text{Pb}_2\text{Pb}^{4+}\text{Co}^{2+}\text{Co}^{3+}\text{O}_12 \) with space group \(\text{Pn}3 \) at ambient conditions. In this crystal symmetry, the \(\text{Pb}^{2+} \) and \(\text{Pb}^{4+} \) are 1:3 ordered at the A and B sites, forming \(\text{Pb}^{2+}\text{O}_2 \) and square-planar \(\text{Pb}^{4+}\text{O}_4 \) coordinated units, respectively. In spite of the smaller charge difference, the large discrepancy of ionic radius between the HS \(\text{Co}^{3+}\)\((t_{2g}^0e_j^2) \) and the LS \(\text{Co}^{3+}\)\((t_{2g}^0e_j^2) \) makes them ordered at the octahedral coordinated B/B’ sites with a rocksalt-type manner. This is similar to that observed in \(\text{La}_3\text{Sr}_2\text{Co}_4\text{O}_9 \) where the hopping of charge carries between these two types of Co ions is confirmed to be severely suppressed due to the
PbCoO$_3$ thus also shows electrical insulating behavior at ambient pressure. For most 3d transition-metal oxides, applying physical pressure can often enhance the p–d hybridization and extend the d-electron bandwidth. As a consequence, the resistance under high pressure is expected to decrease. In sharp contrast, however, the resistance of PbCoO$_3$ gradually increases as the pressure raises from 0.8 to 12.8 GPa, as shown in Figure 2a. This unusual feature can be attributed to the continuous spin state transition of Co$^{2+}$ from high spin to low spin, as will be further confirmed by synchrotron XES and NPD studies. Once the HS Co$^{2+}$ to LS transition is complete, the electronic configuration will vary from $t_{2g}^{6}e_{g}^{2}$ to $t_{2g}^{6}e_{g}^{1}$. In the Co$^{2+}$/Co$^{3+}$-site rocksalt-type ordered crystal structure, electron hopping between the low-spin Co$^{2+}$ and Co$^{3+}$ is also forbidden, or the ordered structure will be broken into a disordered one. Our SXRD reveals that the A- and B-site ordered Pn3 structure of PbCoO$_3$ is unchanged up to ∼20 GPa near RT (shown later). Since the possible carrier hopping via the Co$^{2+}$–O–O–Co$^{2+}$ pathway should be significantly reduced when the HS–LS transition of Co$^{2+}$ occurs, the resistance of PbCoO$_3$ exhibits an unusual increase with pressure up to 12.8 GPa. Above 15.2 GPa, however, the magnitude of resistance starts to decrease. More strikingly, the temperature dependence of resistance changes in nature. One finds that the resistance sharply increases by several orders of magnitude as the temperature decreases from 270 to 50 K at pressures below ∼15 GPa, whereas a weak temperature dependence with the change less than 1 order is found to occur once the pressure exceeds 15 GPa, although the insulating conductivity still shows up until 18.4 GPa, as characterized by the raising resistance on cooling (Figure 2a). These observations suggest that the spin state transition should complete around 15 GPa and other effects (such as Pb–Co charge transfer shown later) lead to the essential variation of resistivity in PbCoO$_3$ above this pressure.

Under further compression to 21.0 and 27.1 GPa, metallic electrical transport behavior occurs at higher temperatures as shown in Figure 2a and more clearly in Figure 2b, indicating the melting of the ordered LS-Co$^{2+}$ and -Co$^{3+}$ states near RT. Moreover, lowering the temperature changes the metallic state back to an insulating state, implying that the electronic states of Co$^{2+}$ and/or Co$^{3+}$ ions further change at lower temperatures. The critical temperature for the metal–insulator (MI) transition (T_{MI}) at 21.0 GPa is about 214 K. In general, higher pressures will reduce the T_{MI} and eventually realize the metallization at a wider temperature region. Unexpectedly, however, the T_{MI} of PbCoO$_3$ shifts toward higher temperatures with further compression. For example, the value of T_{MI} increases to 244 K at 27.1 GPa. Furthermore, in the whole temperature range we measured, the MI transition disappears and only the electrical insulating behavior is observed from 32.2 GPa up to 48.9 GPa, the maximum pressure we applied for electrical transport measurement as presented in Figure 2a. Therefore, if we plot the resistance values collected near RT as a function of pressure (Figure 2c), one can distinguish several different electrical characteristic features. Below about 15 GPa, the compound shows insulating behavior, and the resistance linearly decreases with pressure, indicating that a new mechanism rather than the spin state transition dominates the electrical transport, while the compound still maintains insulating behavior below ∼20 GPa. Between 20 and 30 GPa, the MI transition appears, and the T_{MI} unusually shifts toward higher temperature with further compression. Above 30 GPa, the reentrant insulating behavior is found to occur in the whole temperature region we measured, and the values of resistance linearly decrease with pressure up to 48.9 GPa due to the normal physical pressure effect. Note that during the pressure release, the electrical transitions are all reversible (see Supporting Information Figure S1).

To further understand the series of interesting variations observed in electrical transport measurements, we performed pressure dependent XES and XAS measurements at RT for characterizing the spin states and valence states of Co and Pb. Figure 3 shows the Co K_{β} emission spectra of PbCoO$_3$.

Figure 2. Electrical transport properties of PbCoO$_3$. (a) Temperature-dependence of resistance at different pressures. (b) Metal–insulator transitions observed at 21.0 and 27.1 GPa. The T_{MI} stands for the critical temperature for the transition. (c) Resistance values under various pressures at 270 K. The triangles show the measurement data, and the lines display the linear fitting results.
measured at different pressures. At 0.5 GPa, the spectrum represents a main peak located at ~7650 eV corresponding to the K\textsubscript{\beta\textsubscript{1,3}} line, and a pronounced satellite peak at ~7637 eV corresponding to the K\textsubscript{\beta\prime} line. The intensity ratio of the low-energy K\textsubscript{\beta\prime} line to the main emission K\textsubscript{\beta\textsubscript{1,3}} line is proportional to the number of the unpaired electrons in the incomplete 3d shell47,48 and can be used to determine the spin state of Co2+ ion as a function of temperature17,49 and/or pressure.17,42,49~51

With increasing pressure, the intensity of the low-energy K\textsubscript{\beta\prime} line decreases and almost disappears above ~15 GPa (Figure 3), suggesting a decreasing spin moment of Co2+ ion. The inset of Figure 3 contains a plot of the integrated absolute difference (IAD) as a function of pressure.17,42,49~51 To get the IAD, all of the XES spectra were normalized with respect to the area under the curves and then shifted to have centers of mass at the same position. As an instance, the differential curve between 0.5 and 22.1 GPa is shown in Figure 3. In this instance, the IAD value presents a linear relationship with the average spin number. In PbCoO\textsubscript{3}, the total IAD changes by about 0.043(10) in going from 0.5 to 22.1 GPa. In comparison, for a complete HS-Co3+ to LS-Co3+ transition with spin change \(\Delta S = 2\), the IAD value is 0.15 as observed in Sr\textsubscript{2}Co\textsubscript{0.5}Ir\textsubscript{0.5}O\textsubscript{4}.49

In the present PbCoO\textsubscript{3}, when the HS Co2+ changes into the LS one, the average \(\Delta S\) for the four Co ions per unit cell is 0.5, suggesting that the IAD value should be about 0.05. This value is comparable with the experimental observation, confirming the HS~LS transition of Co2+ in PbCoO\textsubscript{3}. Since the IAD almost becomes zero with pressure going to about 15 GPa, we conclude that the spin state transition should complete around this pressure, in agreement with the electrical transport result. In addition, the continuous spin state transition was further supported by NPD under pressure as shown in Supporting Information Table S1 and Figure S2, where the observed shrinkage of Co2+–O bond can be attributed to the HS to LS variation.

It is well-known that the XAS at the transition metal K edge is very sensitive to the valence state of transition metal.52,53 This technique is generally used to identify the valence states of 3d transition metals. Figure 4a shows the Co K XAS spectra of PbCoO\textsubscript{3} measured at different pressures and normalized intensity \(\mu = 0.8\).50 At pressures below 15 GPa or above 30 GPa one can see a relatively weak linear higher-energy shift of the absorption edge with increasing pressure without changing line shape. Such shift was well studied in RMnO\textsubscript{3} as a physical pressure effect due to shortening Mn–O bond length under pressure.54~56 On the other hand, there is an abrupt higher-energy shift from 20.2 to 29.3 GPa accompanying a variation of
spectral profile, indicating the changes of valence state and crystal structure as shown later. After subtraction of the physical pressure effect, the pressure dependent energy shift relative to 0.2 GPa as presented in Figure 4b (left scale) reflects a change of valence state of Co in PbCoO₃. One can see a considerable energy shift by about 1.1 ± 0.1 eV from 15 to 30 GPa. As a reference, when the valence changes from Co²⁺ to Co³⁺, the energy shift is about 2.5 eV.⁵² The observed Co K edge energy shift in PbCoO₃ suggests the average valence change by about 0.5 (i.e., from Co²⁺ to Co³⁺ in average), as illustrated in Figure 4b (right scale). To fulfill the charge balance requirement, one expects some Pb⁴⁺ changing to Pb²⁺ correspondingly.

Figure 4c presents the pressure dependent Pb L₃ XAS spectra of PbCoO₃. Unlike the XAS spectra at the transition metal L and K edges, where the energy positions of the strong white line and the absorption edge are very sensitive to the number of localized d valence electrons, at the Pb L edge there is no clear white line and energy position. Moreover, the Pb L absorption edge is strongly affected by crystal structure, so it is less sensitive to the Pb valence state. Therefore, it is not a trivial matter to determine the Pb valence state by using the chemical shift of the absorption edge. Fortunately, the Pb L₃ XAS spectrum taken from the high resolution partial fluorescence yield (PFY) mode provides an opportunity to identify the valence state of Pb. As shown in Figure 4c, one finds that there is a sharp lower energy shoulder S_d at 13,030 eV in the PFY spectrum. This lower energy pre-edge peak is assigned to the dipole allowed transition from the 2p⁵/₂ core level to the empty Pb 6d t₂g and e₅g states, respectively.⁵⁷,⁵⁸ It was found that the pre-edge peak S_d can be observed for Pb⁴⁺ ion with two 6s holes but is absent for Pb⁷⁺ ion with fully occupied 6s states. Thus, the spectral intensity of the pre-edge peak S_d represents the number of 6s holes and can be used to determine the valence change of Pb as a function of pressure. After subtracting the background (see the pink dashed curve in Figure 4c) originated from the edge jump and the Pb 5d transitions, the pressure dependent energy shift toward higher angle as expected from the volume contraction, and there is no visible trace for structural phase transition. Therefore, the A- and B-site ordered intermetallic charge transfer transition in BiNiO₃ as well.⁶₀

To get deeper insight into the structural features during the spin state and metal–insulator transitions as well as the Pb–Co intermetallic charge transfer, high-pressure SXRD was carried out. Figure 5a shows the room-temperature SXRD patterns obtained at different pressures. With increasing pressure to 18.8 GPa, all the different peaks systematically shift toward higher angle as expected from the volume contraction, and there is no visible trace for structural phase transition. As shown in Table 1, the a/ c and tetragonal a_p × a_p × c unit cells systematically decrease of Pb. Given the initial average valence state of Pb³.⁵⁺ at lower pressure (Pb⁴⁺→Pb²⁺→Pb³⁺→Pb³⁺→Pb³⁺→Pb³⁺→Pb²⁺), the relative variation of the integral area of S_d suggests the change from Pb³.⁵⁺ to Pb³⁺. The Co K edge (Co²⁺→Co³⁺) and Pb L edge (Pb³⁺→Pb³⁺) XAS spectra thus confirm the Pb⁴⁺→Co³⁺ intermetallic charge transfer which sets in around 15 GPa with a sharp change near 20 GPa and finishes at about 30 GPa. It should be noted that Ni K and Bi L₃ XAS was used to confirm the pressure induced intermetallic charge transfer transition in BiNiO₃ as well.⁵⁰

![Figure 5. High-pressure SXRD patterns and related structural data. (a) Representative SXRD patterns collected at different pressures and room temperature. (b) SXRD patterns in log scale for the ambient pressure (AP) phase (P = 18.8 GPa), Tetra.-I phase (P = 27.3 GPa), and Tetra.-II phase (P = 60.0 GPa). The peaks of AP, Tetra.-I, and Tetra.-II phases are indexed with cubic 2√3a × 2√3a × 2√3a, tetragonal 2a_p × 2a_p × 2a_p, and tetragonal a_p × a_p × c unit cells, respectively. Pressure dependence of (c) normalized lattice parameters, (d) the ratio of a/c, and (e) unit cell volume. The curves in (e) show the fitting results based on the Birch–Murnaghan equation of state as derived in the text.](https://dx.doi.org/10.1021/jacs.9b13508)
unchanged during the HS–LS transition of Co$^{2+}$ (where a_o is the lattice parameter for a simple cubic ABO$_3$ perovskite). This can also account for the electrical insulating behavior observed below 20 GPa shown in Figure 2a. Once the room-temperature metallization takes place between 20 and 30 GPa (Figure 2c), a new high-pressure phase (Tetra.-I phase) appears in this pressure range. As shown in Figure 5a, the SXRD pattern collected at 21.2 GPa displays essentially a different profile from that measured at 18.8 GPa. For example, the single (220) peak around 2θ = 10.8° in the cubic Pn3 phase separates into two sharp diffraction peaks (400) and (222) in the Tetra.-I phase. Although the data can be indexed with a $2\sqrt{2}a_o \times 2\sqrt{2}a_o \times 2a_o$ tetragonal unit cell and possible space groups of P4$_2$/m (No. 84), or P4$_2$2$_2$2 (No. 93), we cannot determine the exact crystal structure (symmetry and atomic positions) for the new Tetra.-I phase because of the unreliable intensity ratio caused by the limited number of particles in a small space of the DAC. However, Le Bail fitting was conducted to understand the structural variations. As shown in Figure 5b, during the structural phase transition from the cubic Pn3 to the Tetra.-I phase around 20 GPa, the normalized a-axis constant expands whereas the c-axis shrinks. Moreover, the c/a ratio experiences a steep drop (Figure 5c). If the cell volume normalized to each formula unit is plotted as a function of pressure (Figure 5d), a considerable volume collapse is found to occur by about 1.76% at 20 GPa, implying that the structural transition is first-order in nature. The presence of coexisting two phases (cubic and Tetra.-I) at 19.7 GPa and 300 K supports the first-order transition (see Figure S3).

When the pressure further increases to 29.5 GPa at RT, a second crystal structure phase transition (Tetra.-II phase) takes place as presented in Figure 5a and Figure 5b. Le Bail analysis indicates another tetragonal lattice for this new phase with a $2\sqrt{2}a_o \times 2\sqrt{2}a_o \times 2a_o$ supercell with possible space groups of P4$_2$3mc (No. 105), P-42c (No. 112), or P4$_2$/mnc (No. 131). During the structural transition from the Tetra.-I to II phase, the normalized a-axis is reduced in a large degree while the c-axis expands slightly (Figure 5c). As a result, the c/a ratio increases remarkably. As seen from the relationship between pressure and the normalized cell volume in Figure 5d, the volume also experiences a discontinuous change from the Tetra.-I to II phase by about 1.12% at 30 GPa. The discontinuous decrease in the unit cell volume and the coexisting two phases (Tetra.-I and II) at 29.5 GPa indicate that the Tetra.-I to II phase transition is also first order (see Figure S3). Since charge transfer essentially changes the charge states and electronic configurations for two different metals, it usually leads to drastic magnetic and electrical variations as well as pressure-induced metallization and the Pb–Co intermetallic charge transfer in PbCoO$_3$.

On the basis of the peculiar charge combination and crystal constitution, we now discuss the origin for the sensitive pressure dependence of the spin and charge states in PbCoO$_3$, as schematically shown in Figure 6. At ambient pressure, the phase. The value of B_0 in the cubic phase of PbCoO$_3$ is similar to that observed in the simple cubic perovskite SrCoO$_3$.57

As seen from the temperature dependent electrical measurements at different pressures (Figure 2), the high-pressure Tetra.-I phase is metallic whereas the Tetra.-II phase is insulating. Moreover, for the Tetra.-I phase occurring between about 20 and 30 GPa, lowering temperature triggers a metal-to-insulator transition. To understand the origin of this MI transition, low-temperature SXRD was performed at different pressures. As shown in Figure 5a, at a pressure near 22 GPa, one finds that the insulating Tetra.-II phase emerges and coexists with the metallic Tetra.-I phase at temperatures below T_{MI} (e.g., at 150 and 100 K). As the pressure increases to about 27 GPa, these two tetragonal phases coexist at higher temperatures such as 200 K. These observations indicate that lowering the temperature favors the Pb$^{2+}$–Co$^{2+}$ charge transfer as well as the formation of the insulating Tetra.-II phase, giving rise to the metal-to-insulator transition with unusual T_{MI} shift. One may notice that the phase boundary determined by SXRD study does not agree well with the M–I transition observed at 21 GPa and 214 K (see phase diagram shown later). It is most probably owing to the presence of temperature/pressure hysteresis at the first-order Tetra.-I to Tetra.-II transition as evidenced in the wide two phases coexisting region. The SXRD data points at 200 K were collected by pressure scan measurements at a constant temperature, while the resistivity measurements were conducted on heating at a constant pressure. Although the exact structural determination for both high-pressure phases remains for future resolution, the present pressure and temperature dependent SXRD results reveal significant structural variations accompanied by the pressure-induced metallization and the Pb–Co intermetallic charge transfer in PbCoO$_3$.

Figure 6. Shematic view of the origin of pressure induced spin state transition and charge transfer in PbCoO$_3$. The dot arrows in the 6s^2 orbitals of Pb show the transferred electrons from the LS Co$^{2+}$. CT = charge transfer.
type ordered perovskite structure, although the charge difference is only 1. In most ABO₃ perovskites with the average B–O–B bond angle larger than 160°, the pressure induced volume shrinking is mainly attributed to the BO₆ octahedral tilting and/or rotation in addition to the B–O bond length decrease. In the current PbCoO₃, however, the initial Co²⁺−O−Co³⁺ bond angle has already decreased to about 140° to fill the small-size Pb⁴⁺ into the perovskite A-site. As a result, when the compound encounters external physical pressure, the Co²⁺O₆ octahedra with significantly longer Co−O bond length than that of Co⁵⁺O₆ have to reduce the volume by majorly decreasing the Co²⁺−O distance (see Figure S2), giving rise to remarkable increase of Co²⁺O₆ octahedral crystal field energy. Since the crystal field overcomes the Hund coupling energy, the high spin state of Co⁷⁷ changes to low spin. Therefore, a continuous HS−LS transition is found to occur in PbCoO₃ at pressure below 15 GPa, which is responsible for the unusual increase of resistance with pressure because the electronic density of state of PbCoO₃ near the Fermi surface is dominated by Co⁷⁷. In addition, first-principle calculations show that there exists visible hybridization between Pb⁴⁺ and Co⁷⁷ at ambient pressure, indicating that the empty 6s orbitals of Pb⁴⁺ have similar energy level as that of the eg orbitals of Co²⁺. As mentioned above, high pressure increases the crystal field energy and induces the HS−LS transition of Co⁷⁷. Correspondingly, the enhanced crystal field will also lift the energy level of the eg orbitals. Thus, following the HS−LS transition, it is energetically favorable for electrons to transfer from the eg orbitals of Co⁷⁷ to the 6s orbitals of Pb⁴⁺ under higher pressure, as we observed in experiment by the continuous Pb⁴⁺−Co²⁺ intermetallic charge transfer between 15 and 30 GPa. Since the charge transfer decreases the component of Co⁷⁷ and therefore reduces the average ionic radius at this atomic site, the accumulated effect of charge transfer eventually breaks the B-site ordered perovskite structure to a disordered one, resulting in the first-order structure phase transition as well as the metallization with pressure up to 20 GPa near RT. Once the charge transfer completes at about 30 GPa, all the LS Co⁷⁷ changes to the LS Co⁵⁺ with S = 0. As a consequence, the compound displays another first-order structure transition and reenters an electrical insulating state. In addition to lowering the temperature, the pressure also favors the Pb⁴⁺−Co⁷⁷ intermetallic charge transfer, leading to the coexistence of the insulating Tetra.-II phase and the metallic Tetra.-I between 20 and 30 GPa at lower temperatures.

4. CONCLUSIONS

According to the high-pressure resistance, XES, XAS, and SXRD results described above, we obtain an interesting pressure and temperature dependent phase diagram for PbCoO₃ as shown in Figure 7. (i) Below ~20 GPa, the compound maintains the A- and B-site ordered quadruple perovskite structure in the cubic Pb₃ symmetry with the charge combination of Pb⁴⁺ Pb⁴⁺ 3Co²⁺ 3Co³⁺ O₁₂ (Pb⁵⁺Co⁵⁺O₃ in average). However, the HS state of Co⁷⁷ sensitively depends on external pressure. It sluggishly changes to a LS state with increasing pressure up to about 15 GPa. When the spin state transition finishes, pressure induced intermetallic charge transfer starts to occur between Co²⁺ and Pb⁴⁺ ions, leading to essentially different electrical transport properties at pressures below and above 15 GPa. (ii) Between approximately 20 and 30 GPa, metallization is observed due to the accumulated effect of Pb⁴⁺−Co⁷⁷ charge transfer near RT, strongly suggesting the melting of the ordered low-spin Co²⁺ and Co⁷⁷ states into a mixed Co⁷⁷ on average. This is consistent with the first-order structural phase transition to the Tetra.-I phase. The Pb⁴⁺−Co⁵⁺ charge transfer still takes place in the Tetra.-I phase, making the LS-Co⁷⁷ state be oxidized to the LS-Co⁵⁺ one. Since the composition of the strongly insulating LS-Co⁷⁷ is enhanced by the charge transfer, the TMI of PbCoO₃ exhibits an unusual shift toward higher temperatures on compression. Moreover, at fixed pressure in this phase, lowering temperature favors the Pb⁴⁺−Co⁷⁷ ICT as well as the formation of the insulating Tetra.-II phase, which is responsible for the observed low-temperature MI transition. (iii) With pressure up to ~30 GPa at RT, the Pb−Co intermetallic charge transfer completes, changing the charge combination to be Pb⁵⁺Co⁵⁺O₃ on average. Accordingly, the compound experiences another first-order structure phase transition toward the Tetra.-II phase with considerable volume shrinking. In the Tetra.-II phase, all the transition-metal sites are occupied by the LS-Co⁵⁺ with S = 0. Therefore, electrical insulating behavior shows again in the whole temperature region we measured. The present PbCoO₃ provides the first example where spin state, charge state, crystal structure, and metal−insulator transitions take place collectively in the same material system, opening up a new avenue for studying sequential spin state transition and intermetallic charge transfer as well as related multifunctional transformations.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.9b13508.

Refined structural parameters for PbCoO₃ at 290 K under various pressures based on the neutron powder diffraction; electrical transport properties of PbCoO₃ during pressure release from 48.9 to 1.6 GPa; pressure dependence of the average bond lengths calculated from the structural parameters determined by Rietveld analysis of neutron diffraction data; synchrotron X-ray diffraction (SXRD) patterns measured at different pressures and temperatures (PDF)

Figure 7. Pressure and temperature dependent phase diagram of PbCoO₃. The circle (○), cross (×), and square (□) respectively stand for the cubic, Tetra.-I, and Tetra.-II phases as determined from SXRD measurements. The dash curves approximately show the phase boundaries.
AUTHOR INFORMATION

Corresponding Authors

Jinming Chen — National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, R.O.C.; Email: jmchen@nsrc.org.tw

Masaki Azuma — Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama 226-8503, Japan; Kanagawa Institute of Industrial Science and Technology, Ebina 243-0435, Japan; Email: mazuma@msl.titech.ac.jp

Youwen Long — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China; Email: ywlong@iphy.ac.cn

Authors

Zhehong Liu — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China

Yuki Sakai — Kanagawa Institute of Industrial Science and Technology, Ebina 243-0435, Japan; Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama 226-8503, Japan

Junye Yang — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

Wenmin Li — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China

Ying Liu — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China

Xubin Ye — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China

Shijun Qin — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China

Stefano Agrestini — Max-Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany

Kai Chen — Max-Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany; Email: orcid.org/0000-0002-7667-321X

Sheng-Chieh Liao — Max-Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany

Shu-Chih Haw — National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, R.O.C.

Francois Baudelet — Synchrotron SOLEIL, 91192 GIF-sur-Yvette, France

Hirofumi Ishii — National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, R.O.C.

Takumi Nishikubo — Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama 226-8503, Japan

Hayato Ishizaki — Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama 226-8503, Japan

Tatsuru Yamamoto — Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama 226-8503, Japan

Zhao Pan — Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama 226-8503, Japan; orcid.org/0000-0002-8693-2508

Masayuki Fukuda — Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama 226-8503, Japan

Kotaro Ohashi — Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama 226-8503, Japan

Kana Matsuno — Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama 226-8503, Japan

Akihiko Machida — Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Saito, Hyogo 679-5148, Japan

Tetsu Watanuki — Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Saito, Hyogo 679-5148, Japan

Saori I. Kagawuchi — Japan Synchrotron Radiation Research Institute, Saito, Hyogo 679-5198, Japan

Angel M. Arevalo-Lopez — Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom

Changqing Jin — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China

Zhwei Hu — Max-Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany

J. Paul Attfield — Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom; orcid.org/0000-0001-9763-3987

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.9b13508

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank Y. F. Yang and Y. Y. Cao for fruitful discussions. This work was supported by the National Key R&D Program of China (Grants 2018YFE0103200 and 2018YFA0305700), the National Natural Science Foundation of China (Grants 11934017, 51772324, 11921004, and 11574378), the Chinese Academy of Sciences (Grants QYZDB-SSW-SLH013, GJHZ1773, YZ201555), the Ministry of Science and Technology (Grant MOST 105-2113-M-213-005-MY3), JSPS KAKENHI Grants JP18H05208 and JP19H05625 from the Japan Society for the Promotion of Science (JSPS) and JSPS and CAS under the Japan-China Scientific Cooperation Program. Y.L. was partially supported by World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology and Collaborative Research Projects, Laboratory for Materials and Structures, Tokyo Institute of Technology. The synchrotron-radiation X-ray diffraction experiments were performed using a QST experimental station at JAEA beamline BL22XU, SPring-8, with the approval of the Japan Synchrotron Radiation Research Institute (Proposals 2016A3784, 2017A3781, 2017B3751, 2018A3782, 2019A3781, and 2019B3781), and were supported by QST Advanced Characterization Nanotechnology Platform under the remit of “Nanotechnology Platform” of the Ministry of Education, Culture, Sports, Science and Technol-

REFERENCES

