Advances in new generation diluted magnetic semiconductors with independent spin and charge doping

Guoqiang Zhao¹, ², Zheng Deng¹, ², and Changqing Jin¹, ², †

¹Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
²School of Physics, University of Chinese Academy of Sciences, Beijing, 100190, China

Abstract: As one branch of spintronics, diluted magnetic semiconductors (DMSs) are extensively investigated due to their fundamental significance and potential application in modern information society. The classical materials (Ga,Mn)As of III–V group based DMSs has been well studied for its high compatibility with the high-mobility semiconductor GaAs. But the Curie temperature in (Ga,Mn)As film is still far below room temperature because the spin & charge doping is bundled to the same element that makes the fabrication very difficult. Alternatively, the discovery of a new generation DMSs with independent spin and charge doping, such as (Ba,K)(Zn,Mn)_2As_2 (briefly named BZA), attracted considerable attention due to their unique advantages in physical properties and heterojunction fabrication. In this review we focus on this series of new DMSs including (I) materials in terms of three types of new DMSs, i.e. the “111”, “122” and “1111” system; (II) the physical properties of BZA; (III) single crystals & prototype device based on BZA. The prospective of new type of DMSs with independent spin and charge doping is briefly discussed.

Key words: diluted magnetic semiconductors; independent spin and charge doping; high Curie temperature

Citation: G Q Zhao, Z Deng, and C Q Jin, Advances in new generation diluted magnetic semiconductors with independent spin and charge doping[J]. J. Semicond., 2019, 40(8), 081505. http://doi.org/10.1088/1674-4926/40/8/081505

1. Introduction

It is an everlasting dream to make electronic devices miniaturization, multi-functionalization, intellectualization, and low-power consumption in this current information society[1]. But many bottleneck problems occur when the fabrication technology encounter nanometer scale[2]. As one branch of spintronics, diluted magnetic semiconductors (DMSs) offers intriguing opportunities to combine semiconductor properties and ferromagnetism in a single material that would enable to fabricate new devices to process and store information simultaneously[3, 4].

DMS researches date back to the concentrated magnetic semiconductors compounds, like EuX[5] (X = O, S, Se and Te) & CdCr₂X₄[6] (X = S and Se). However, the complicated growth and the relatively low Curie temperature (T_C) for these compounds limited these materials to fundamental studies. In 1980s, people payed much attention to Mn doped II–VI group DMSs, such as (Zn,Mn)Te (Zn,Mn)_2Se (Cd,Mn)Te, etc[7] and Pb-SnMnTe[8]. Yet T_C is still only several Kelvins due to lack of effective approach to dope carriers[9]. Benefiting from the low temperature molecular beam epitaxy (LT-MBE) technique, Mn doped III–V group DMSs were explored in 1990s, like (Ga,Mn)As[10–12] and (In,Mn)As[13]. The highest T_C could reach 200 K in heavy Mn doped (Ga,Mn)As film with proper annealing procedure[14–16].

It is of great fundamental significance and practical value to further improve T_C of (Ga,Mn)As[17, 18]. However, in (Ga,Mn)As, the Ga³⁺/Mn²⁺ substitution offers hole carriers and spins simultaneously, which make it difficult to individually control charge and spin concentrations and more importantly to improve T_C. Since 2011, a new type of DMSs with independent spin and charge doping, such as the “111” type Li(Zn,Mn)As[19] and “122” type (Ba,K)(Zn,Mn)_2As₂ (BZA)[20] named by its stoichiometry ratio, have been discovered. In these DMSs[21], such as BZA, spins are introduced by isovalent Zn²⁺/Mn²⁺ doping, and charge carriers are introduced by heterovalent Ba²⁺/K¹⁺ substitution. Taking the advantage of freedom to individually control of charge and spin, BZA exhibit ferromagnetic order with T_C up to 230 K[22] which is record of controlled reliable T_C among carrier mediated ferromagnetic DMSs[16]. In this review, we demonstrate the discovery of three basic groups of new DMSs, namely the “111”, “122” and “1111” families (Fig. 1). Then we focus on physical properties of BZA and prototype device based on BZA single crystal. In the last section, we discuss the prospective of new type of DMSs with independent spin and charge doping.

2. Polycrystals synthesis and basic physical properties

2.1. “111” type DMSs

LiZnAs[23, 24] is a direct-gap semiconductor that has a cubic crystal structure with space group F-43m as shown in Figs. 1(a) & 1(b) and a band gap (1.61 eV) similar to that of GaAs[25] (1.52 eV). Note that LiZnAs could be viewed as a zinc blende structure, in which Ga sites in (Ga,As) are replaced with Li and Zn. Benefiting on the LiFeAs[26] iron superconductor fabrication experiences and facilities. Jin’s group firstly reported the successful synthesis of bulk form polycrystals Li(Zn,Mn)As[19]. In principle, the Zn²⁺/Mn²⁺ replacement offers spins, and the off-stoichiometrical Li cation adjust the carrier’s type and concentration. But the long range ferromagnetic ordering was only observed with the excess Li doping and it is a
p-type rather than n-type as the theory prediction[27]. The reason is that the excess Li+ prefers to occupy the Zn2+ sites based on a DFT calculation[28]. The temperature dependence of M at 2 kOe (no difference between field cooling and zero field cooling procedures) was illustrated in Fig. 2(a), and external field H from 0 to 20 kOe dependence of M at 2 K is shown in Fig. 2(b). Clear signatures of ferromagnetic order were seen in these figures with the highest T_C of 50 K in Li\textsubscript{1.1}(Zn\textsubscript{0.9}Mn\textsubscript{0.1})\textsubscript{0.15} As sample. Semiconducting behavior of resistivity of LiZnAs (green line in Fig. 2(c)) changes to T-independent behavior for Li deficient systems, whereas much smaller resistivity and definite metallic behavior were found for Li excess samples. The resistivity increases monotonically with increasing Mn concentration in Fig. 2(d) which suggests that Mn acts as a scattering center. The onset of magnetic order reduces this scattering rate, as can be seen in the negative magnetoresistance of Li\textsubscript{1.1}(Zn\textsubscript{0.9}Mn\textsubscript{0.1})\textsubscript{0.15} As sample in Fig. 2(e) below T_C. Fig. 2(f) shows representative anomalous Hall effect of Li\textsubscript{1.1}(Zn\textsubscript{0.9}Mn\textsubscript{0.1})\textsubscript{0.15} As at 2 K, which exhibits p-type carriers with concentrations of $n \sim 10^{20}$ cm$^{-3}$.

In order to examine volume fraction and the ordered moment size, μSR measurements were performed on sintered polycrystalline specimens of Li\textsubscript{1.1}(Zn\textsubscript{0.9}Mn\textsubscript{0.1})\textsubscript{0.15} As[29]. The time spectra in zero field (ZF), shown in Fig. 3(a), clearly show an increase of the relaxation rate below -25 K on Fig. 3(b), and measurements in longitudinal fields confirmed that the increase is from static magnetic order. This is in contrast with the earlier result in (Ga,Mn)As[30]. The volume fraction of regions with static magnetism on Fig. 3(c) indicates a sharp transition at $T_C \sim 30$ K, and full volume magnetic order achieved when $T < 10$ K. Further studies on fabrication methods and heat treatments might help improve homogeneity of the transition. The weak transverse field (WTF) of 30 Oe, shown in Fig. 3(d), also provide direct signal of the magnetic volume fraction[31]. When the internal magnetic field is much larger than the applied external field, the scale of oscillation can reflect the paramagnetic volume. The consistent of the ordered fraction from the measurements in ZF and WTF, shown in Fig. 3(c), supports the validity of our analysis of ZF-μSR spectra.

The discovery of Li\textsubscript{(Zn,Mn)As} sparked extensive researches in this 111 type DMSs[28, 32–36]. Fig. 4 shows only three of these new DMSs with independent spin and charge doping, e.g. Li\textsubscript{(Zn,Mn)P}, Li\textsubscript{(Cd,Mn)P} and Li\textsubscript{(Zn,Co,Mn)As}. Isotactical to Li\textsubscript{(Zn,Mn)As}[19], Li\textsubscript{(Zn,Mn)P}[28] is also a p-type DMSs with excess lithium providing charge doping. The highest T_C could reaches 34 K. The saturation moment per Mn (M_{sat}) is about $1\mu_B$-$2\mu_B$, which is comparable to that in (Ga,Mn)As[11], Li\textsubscript{(Zn,Mn)As}[19], etc. $\rho(T)$ of Li\textsubscript{(Zn,Mn)P} decreases with increasing temperature, which shows semiconductor behaviors[28]. Li\textsubscript{(Zn,Mn)P} is a soft magnetic material with about less than 100 Oe, shown in Fig. 4(a), based on the magnetic hysteresis loop and magnetoresistance curves. Magnetoresistivity $\rho(T)$ of Li\textsubscript{1.1}(Zn\textsubscript{0.9}Mn\textsubscript{0.1})\textsubscript{0.15} P at different external fields are shown in Fig. 4(b). $\rho(T)$ increases monotonically with decreasing temperature, showing a rapid rise below T_C. As shown in the inset of Fig. 4(b), the negative magnetoresistance is far from saturation in rather high magnetic field, in which spin orientation is fully aligned. In this condition, the negative magnetoresistance presumably results from the weak localization effects[37]. Systematic μSR measurements[32] also confirmed that the magnetic volume fraction on Li\textsubscript{1.15}(Zn\textsubscript{0.9}Mn\textsubscript{0.1}) P could reaches nearly 100% at 2 K. Compared to Li\textsubscript{(Zn,Mn)P}, DMSs Li\textsubscript{(Cd,Mn)P}[36] with optimum doping exhibits a higher T_C of 45 K as shown in Fig. 4(c). But more than 80% negative magnetoresistance, shown in Fig. 4(d), is a record in this 111 type DMSs. For this new type DMSs, spins and carriers are indispensable.

Usually, the carriers are induced in Li site while spins in Zn site in all these above systems. Different from that idea, a new DMSs Li\textsubscript{(Zn,Co,Mn)As}[13] was reported in which carriers and spins are both induced in Zn site simultaneously. Fig. 4(e) dis-
Fig. 2. (Color online) Magnetization & transport measurements of Li(Zn,Mn)As. (a) The temperature dependence of M in $H = 2$ kOe (no difference in FC and ZFC procedures), (b) M at 2 K in various values of external field H from 0 to 20 kOe. The grey symbols show a hysteresis loop in $x = 0.03$ system plotted for small field regions (top horizontal axis), which demonstrate a very small coercive field of 30–100 Oe. (c) Resistivity of Li$_{1.1}$ZnAs, showing metallic behavior of Li deficient ($y < 0$) and Li excess ($y > 0$) compounds. (d) Resistivity of Li$_{1.1}$(Zn$_{1−x}$Mnx)As, showing the effect of increasing charge scattering with increasing Mn concentration x. (e) Resistivity of Li$_{1.1}$(Zn$_{0.95}$Mn$_{0.05}$)As in various external field H, which exhibits negative magnetoresistance below $T_c \sim 50$ K. (f) Hall resistivity of Li$_{1.1}$(Zn$_{0.99}$Mn$_{0.01}$)As at 2 K, which exhibits p-type carriers with concentrations of $n \sim 10^{20}$ cm$^{-3}$ together with the anomalous Hall effect due to spontaneous magnetization at $H = 0$. Adopted from Ref. [19].

Fig. 3. (Color online) Results of μSR measurements in sintered polycrystalline specimens of Li$_{1.1}$(Zn$_{0.95}$Mn$_{0.05}$)As. (a) Time spectra in zero field that exhibit onset of extra relaxation below $T \sim 30$ K. The solid lines represent fits to the relaxation function for dilute spin systems in zero field for the static case (often used for dilute alloy spin glasses), which exhibits a fast relaxation, plus a non-relaxing paramagnetic component. (b) The relaxation rate α of the signal that exhibits fast relaxation. (c) The volume fraction of the magnetically ordered region, derived from the amplitude of the fast relaxing signal. (d) μSR time spectra in the WTF of 30 Oe. The oscillation amplitude corresponds to the paramagnetic volume fraction. Adopted from Ref. [19].
plays the temperature dependence of M in $H = 100$ Oe for Li(Zn$_{1-x}$Co$_x$)Mn$_2$P$_3$ with $x = 0.05$ and 0.15. There is no difference in ZFC and FC procedures for small coercive fields. Arrott plots at various temperatures above and below T_C show the ferromagnetic transition temperature at 45 K. (d) Negative magnetoresistance at different temperatures. (e) The temperature dependence of M in $H = 100$ Oe for Li(Zn$_{1-x}$Co$_x$)Mn$_2$P$_3$ shows hysteresis with an external field of 1 T, which is due to the suppression of magnetic fluctuations below T_C. This feature is also observed in Li(Zn,Mn)As system[18]. Fig. 4(d) demonstrates the Hall resistivity of Li(Zn$_{1-x}$Co$_x$)Mn$_2$P$_3$ at 2 K, which exhibits p-type carriers with concentrations of $n = 7.74 \times 10^{19}$ cm$^{-3}$ together with the anomalous Hall effect due to spontaneous magnetization at $H = 0$. Adopted from Refs. [28, 33].

2.2. “122” type DMSs

BaZn$_{2}$As$_2$ is a semiconductor synthesized at high temperature (>900 °C) with the tetragonal ThCr$_2$Si$_2$ crystal structure. A new type “122” DMSs (Ba,K)(Zn,Mn)$_2$P$_3$ has been synthesized with the Ba$^{2+}$/K$^+$ substitution (hole carries) and Zn$^{2+}$/Mn$^{2+}$ (spins) doping. Fig. 5(a) shows the temperature dependence of M in $H = 500$ Oe for (Ba$_{0.85}$K$_{0.15}$)(Zn$_{0.85}$Mn$_{0.15}$)$_2$P$_3$ at ZFC and FC procedures with $T_C = 230$ K. The hysteresis curves $M(H)$ are shown in the inset of Fig. 5(a). Fig. 5(b) exhibits the spontaneous magnetization curve under 5 Oe of (Ba$_{0.85}$K$_{0.15}$)(Zn$_{0.85}$Mn$_{0.15}$)$_2$P$_3$ showing $T^{3/2}$ dependence in low temperature, as expected for a homogeneous ferromagnet[39]. Volume fraction of regions with static magnetic order, estimated by μSR measurements in ZF and WZF of 50 Oe are shown in Fig. 5(c). The μSR results indicate that static magnetic order develops in the entire volume with a sharp onset around T_C. Resistivity of (Ba$_{1-x}$K$_x$)(Zn$_{1-x}$Mn$_x$)$_2$P$_3$ for with several different charge doping levels are shown in Fig. 5(d). For Ba$_2$Zn$_2$As$_2$ semiconductor, doping K atoms into Ba sites introduces hole carriers, leading to metallic behavior in (Ba$_{1-x}$K$_x$)(Zn$_{1-x}$Mn$_x$)$_2$P$_3$. The resistivity curves of (Ba$_{1-x}$K$_x$)(Zn$_{1-x}$Mn$_x$)$_2$P$_3$ for selected values of x up to 0.3, exhibit a small increase at low temperatures due to spin scattering effect caused by Mn dopants. This variation of resistivity is often observed in heavily doped semiconductors[39]. Strictly metallic behavior (with monotonic decrease of resistivity with decreasing temperatures) is not a precondition of having a ferromagnetic coupling between Mn moments mediated by RKKY interaction[12, 30]. Fig. 5(e) shows the magnetoresistance curve measured in the external field up to 7 T at different temperatures, showing obvious negative magnetoresistance below T_C. Fig. 5(f) shows the Hall effect results of (Ba$_{0.85}$K$_{0.15}$)(Zn$_{0.90}$Mn$_{0.10}$)$_2$As$_2$ at several temperatures with hole concentration about 4.3×10^{20} cm$^{-3}$.

Different from (Ba,K)(Zn,Mn)$_2$As$_2$, another “122” type DMSs with hexagonal CaAl$_2$Si$_2$ was reported subsequently, such as (Ca,Nal)(Zn,Mn)$_2$As$_2$[40], (Sr,Nal)(Zn,Mn)$_2$As$_2$[41] and (Sr,Na)(Cd,Mn)$_2$As$_2$[42], etc. Fig. 6(a) shows the temperature dependence of M in $H = 500$ Oe for (Ca$_{0.90}$Na$_{0.10}$)(Zn,Mn)$_2$As$_2$ with several different charge doping levels at ZFC and FC procedures. The highest T_C is 33 K. In Fig. 6(b), the temperature dependence of the volume fraction of regions with static magnetic order, derived from μSR measurements in ZF, is consistent with that of spontaneous magnetization under 5 Oe. The latter shows $T^{3/2}$ dependence in low temperature expected for a homogeneous ferromagnet[22, 30, 38]. Due to the competition between nearest-neighbor antiferromagnetic interactions and ferromagnetic interactions from remote Mn moments, M_{sat} per Mn decreases with increasing Mn concentration. μSR results, shown in Fig. 6(d) are also consistent with the spontaneous magnetization under 10 Oe. This means $(Sr_{0.8}Na_{0.2})(Zn_{0.85}$ Mn$_{0.15})_2$As$_2$ is also a homogeneous ferromagnet with almost 100% ordered volume fraction at low temperatures. Fig. 6(e) shows the temperature dependence of M in $H = 500$ Oe for $(Sr_{1.2}Na_0)(Cd_{1-x}Mn_x)_2As_2$ with several different charge doping levels x at ZFC and FC procedures with the highest T_C 13 K.
Fig. 5. (Color online) Magnetization & transport measurements of (Ba,K)(Zn,Mn)\(_2\)As\(_2\). (a) The temperature dependence of \(M\) in \(H = 500\) Oe for (Ba\(_{0.2}\),K\(_{0.3}\))(Zn\(_{0.85}\),Mn\(_{0.15}\))As\(_2\) at ZFC and FC procedures with \(T = 230\) K. Inset: The isothermal magnetic hysteresis curve \(M(H)\), measured in the external field \(H\) up to 7 T. (b) The spontaneous magnetization curve under 5 Oe of (Ba\(_{0.2}\),K\(_{0.3}\))(Zn\(_{0.85}\),Mn\(_{0.15}\))As\(_2\), showing \(T^{3/2}\) dependence in low temperature expected for a homogeneous ferromagnet. (c) Volume fraction of regions with static magnetic order, estimated by \(\mu\)SR measurements in ZF and weak transverse field (WTF) of 50 G. No hysteresis is seen for WTF measurements with ZF cooling and field cooling in 500 G. Inset: DC magnetization results of the specimens used in \(\mu\)SR measurements. (d) Resistivity of (Ba\(_{1-x}\),K\(_x\))(Zn\(_{1-x}\),Mn\(_x\))As\(_2\) for with several different charge doping levels. (e) Magnetoresistance curve measured in the external field up to 7 T at several selected temperatures, with obvious negative magnetoresistance below \(T_c\). Inset: Resistivity curve of (Ba\(_{0.8}\),K\(_{0.2}\))(Zn\(_{0.85}\),Mn\(_{0.15}\))As\(_2\). (f) Hall effect results from a sintered specimen of (Ba\(_{0.8}\),K\(_{0.2}\))(Zn\(_{0.85}\),Mn\(_{0.15}\))As\(_2\) at several selected temperatures. A large coercive field is seen at 2 K. Adaped from Refs. [20, 22].

Fig. 6. (Color online) Magnetization & transport measurements of (Ca,Na)(Zn,Mn)\(_2\)As\(_2\), (Sr,Na)(Zn,Mn)\(_2\)As\(_2\) and (Sr,Na)(Cd,Mn)\(_2\)As\(_2\). (a) The temperature dependence of \(M\) in \(H = 500\) Oe for (Ca\(_{0.9}\),Na\(_{0.1}\))(Zn,Mn)\(_2\)As\(_2\) with several different charge doping levels \(x\) at ZFC and FC procedures with the highest \(T_c\) 33 K. (b) The temperature dependence of the volume fraction of regions with static magnetic order, estimated by \(\mu\)SR measurements in ZF, consistent with that of spontaneous magnetization under 5 Oe, which shows \(T^{3/2}\) dependence in low temperature expected for a homogeneous ferromagnet. (c) Curie temperature \(T_c\), Weiss temperature \(\theta\), effective paramagnetic moment \(M_{\text{eff}}\), and saturation moment \(M_{\text{sat}}\) for (Sr\(_{0.9}\),Na\(_{0.1}\))(Zn\(_{1-x}\),Mn\(_x\))As\(_2\) with different spin doping. (d) The temperature dependence of the volume fraction of regions with static magnetic order, estimated by \(\mu\)SR measurements in ZF, consistent with that of spontaneous magnetization under 10 Oe. Inset is the relaxation reat versus temperature, which is consistent with \(T_c\). (e) The hysteresis curves of (Sr\(_{1-x}\),Na\(_x\))(Cd\(_{1-x}\),Mn\(_x\))As\(_2\) samples with \(x = 0.05, 0.1,\) and 0.125, respectively, at 2 K. (f) Negative magnetoresistance of (Sr\(_{0.9}\),Na\(_{0.1}\))(Cd\(_{0.8}\),Mn\(_{0.2}\))As\(_2\) at 2 K. Adoped from Refs. [40–42].

G Q Zhao et al.: Advances in new generation diluted magnetic semiconductors
Magnetotransport measurements performed on \((\text{Sr}_{0.8}\text{Na}_{0.2})\)(\text{Zn}_{0.8}\text{Mn}_{0.2})\text{As}\) at 2 K under the field of up to 7 T are shown in Fig. 6(f). The negative magnetoresistance reached –23% at 2 K and 7 T. Taking the orbital effect into consideration, the negative magnetoresistance data are fit by \(k B^{1/2}\) rule, indicating weak localization magnetoresistance at low temperature. The similar phenomenon is found in \((\text{Ga},\text{Mn})\text{As}\) system\(^{37,43}\).

2.3. “1111” type DMSs

Isostructural to the well-studied iron-based superconductor \(\text{LaFeAs}(O,F)\),\(^{44}\) a new kind of “1111” DMSs were reported after the “111” and “122” DMSs, e.g. \((\text{La},\text{Ca})(\text{Zn},\text{Mn})\text{SbO}\)\(^{45}\) and \((\text{Ba},\text{K})(\text{Zn},\text{Mn})\text{As}\)\(^{36,47}\), etc. Fig. 7(a) shows the \(M(H)\) for \((\text{La}_{0.95}\text{Ca}_{0.05})(\text{Zn}_{0.9}\text{Mn}_{0.1})\text{SbO}\) measured at 25 and 100 K, respectively. An abrupt increase of magnetization at 25 K suggests that a ferromagnetic state and paramagnetic state transition \((T_c)\) occurs. The highest \(T_c\) reaches 40 K with proper doping in \((\text{La},\text{Ca})(\text{Zn},\text{Mn})\text{SbO}\) material. The resistivity increases monotonically with increasing Mn concentration, suggesting that scattering center of Mn. The resistivity of \((\text{La}_{0.95}\text{Ca}_{0.05})(\text{Zn}_{0.9}\text{Mn}_{0.1})\text{SbO}\) is shown in Fig. 7(b), with magnetic field up to 5 T. A negative magnetic resistance is clearly observed in a wide temperature region. This behavior can be well explained by the field suppression of the spin fluctuation\(^{48}\). Fig. 7(c) shows the \(M(T)\) in ZFC and FC procedures under 500 Oe for the \((\text{La}_{0.8}\text{K}_{0.2})(\text{Zn}_{0.9}\text{Mn}_{0.1})\text{As}\) samples with \(y = 0.025, 0.05, 0.075, 0.1, 0.15\), respectively. The highest \(T_c\) reaches 30 K for optimal Mn doping \((y = 0.1)\). Above \(T_c\), the susceptibility is fit to Curie–Weiss law as shown in the inset of Fig. 7(c), which indicates a ferromagnetic interaction between Mn\(^{2+}\). The temperature dependence of the fast relaxation rate \(A\) is plotted in Fig. 7(d), exhibiting a monotonic increase with decreasing temperature and reaching a maximum value at the lowest measurement temperature (2 K). The relationships between hole concentration and \(T_c\) of “111”, “122” and “1111” DMSs and other diluted ferromagnetic semiconductor systems are plotted in Fig. 7(e)\(^{19,20,22,28,36,45,49,50}\). From \((\text{Li}(\text{Zn},\text{Mn})\text{P})\) to \((\text{Ba},\text{K})(\text{Zn},\text{Mn})_2\text{As}_2\), \(T_c\) is considerably improved. As the Zener model predicted\(^{51,52}\), the ferromagnetic ordering in DMSs is mediated by hole carriers, and the Curie temperature is positive correlated with hole concentration.

3. Properties of \((\text{Ba},\text{K})(\text{Zn},\text{Mn})_2\text{As}_2\)

3.1. X-ray absorption spectroscopy (XAS) & angle-resolved photoemission spectroscopy (ARPES)

The origin of magnetic ordering on DMSs is still full of debates\(^{53–56}\) meanwhile the general understanding for most common (III, Mn)V–based DMSs invokes As-derived valence-band states\(^{57,58}\) as mediators of ferromagnetic interactions. As for Mn-doped II–V semiconductors \((\text{Ba},\text{K})(\text{Zn},\text{Mn})_2\text{As}_2\), the details of the electronic structure and the role of As mediating (hole) states remain unresolved both in experiment and theory. A theory\(^{49}\) predicts that the competition between the short-range antiferromagnetic (superexchange) interaction and the longer-range ferromagnetic interaction mediated by the itinerant holes determines the final ground state of BZA. Thus it is of great significance to verify the electronic states in \((\text{Ba},\text{K})(\text{Zn},\text{Mn})_2\text{As}_2\).

Fig. 8(a) exhibits the X-ray absorption spectroscopy (XAS) measurements\(^{56}\) of the Mn \(L_{2,3}\) edge on \((\text{Ba}_{0.8}\text{K}_{0.2})(\text{Zn}_{0.8}\text{Mn}_{0.15})\text{As}_2\). The line shapes of \((\text{Ba},\text{K})(\text{Zn},\text{Mn})_2\text{As}_2\) are similar to \((\text{Ga}_{0.93}\text{Mn}_{0.07})\text{As}\) and \((\text{Ga}_{0.95}\text{Mn}_{0.05})\text{N}\), which indicates that the valence of
Mn atoms is 2+ and that Mn 3d orbitals strongly hybridize with the As 4p orbitals as in (Ga,Mn)As and (Ga,Mn)N system. The strength of hybridization is weaker than (Ga,Mn)As but stronger than (Ga,Mn)N according to the shoulder structures around $h\nu = 640$ and 643 eV. The line shape shows a more localized nature than the Mn metal [63] and metallic Mn doped into BaFe$_2$As$_2$ [64]. Different from LaMnO$_3$ and MnO [65], \((\text{Ba}_{0.2}\text{K}_{0.3})\text{(Zn}_{0.85}\text{Mn}_{0.15})\text{As}_2\) does not show the clear multiple structures, consistent with the semi-metallic conductivity in Mn-BaZn$_2$As$_2$ [20]. Figs. 8(b)–(d) display the electronic structure of \((\text{Ba}_{0.90}\text{K}_{0.09})\text{(Zn}_{0.85}\text{Mn}_{0.15})\text{As}_2\) by soft X rays angle-resolved photoemission spectroscopy (ARPES) [66]. The results clarify the host valence-band electronic structure is primarily from the As 4p states. Two hole pockets around the \(F\) point explain the metallic behavior. The impurity band is well below the valence-band maximum (VBM), unlike that in (Ga,Mn)As, which is around the VBM. We conclude that the strong hybridization between the Mn 3d and the As 4p orbitals in \((\text{Ba}_x\text{K})(\text{Zn},\text{Mn})_2\text{As}_2\) plays a key role in creating the impurity band and inducing high temperature ferromagnetism.

G Q Zhao et al.: Advances in new generation diluted magnetic semiconductors
3.2. Single crystal growth and spin polarization measurements

Compared with polycrystals, single crystals are ideal research platforms due to fewer defects. (Ba,K)(Zn,Mn)₂As₂ single crystal[77,78] is grew with flux method as shown in the inset of Fig. 9(a). Fig. 9(b) demonstrates the magnetization curves in different directions with T_c of about 50 K. Large anisotropic behavior are shown in Fig. 9(c) with easy axis along c. The semiconductor behavior on Fig. 9(d) arises from the localization effect[69]. Based on the Magnetoconductance Rₓₓ and Hall effect Rᵧᵧ measurements, the hole carrier density increase from 2.82×10²⁰ cm⁻³ at 2 K to 4.80×10²⁰ cm⁻³ at 130 K. The arise is from the enhanced thermal excitation from the impurity band to the conduction band.

Andreev reflection spectroscopy (AR spectroscopy) is commonly used to achieve spin polarization (P) in various materials, e.g., (Ga,Mn)As[70], (Ga,Mn)Sb[71], (La,Sm)₃MnO₇[72], CrO₂[73], EuS[74], and HgCr₂Se₄[75]. A schematic view of the BZA/Pb heterojunction is shown in Fig. 10(a). A "clean" interface, represented by the parameter Z, is a crucially required in spectral analysis. For this the experiment, the small Z value (Z = 0.38 ≪ 1) implies the manifestation of a clean and transparent interface between BZA single crystal and Pb film. One key parameter for analysis is the differential conductance, G(V) = dI(V)/dV. It is measured as a function of dc-bias voltage (V) crossing the AR junction. Fig. 10(b) shows normalized differential conductance G/G₀ spectra (red dot) and their fits to the modified BTK theory (blue line) at 1.7 K. Spin polarization of 66% is obtained. Besides, about 40%–60% spin polarization is also achieved in a new DMSs (Ba,Na)(Zn,Mn)₂As₂[77]. The success on AR junction paves a solid route to fabricate multilayer heterojunctions based on BZA.

Compared to classical DMSs, new type of DMSs has one great advantage, existence of numerous isostructural function materials. As shown in Fig. 11, (Ba,K)(Zn,Mn)₂As₂ shares the same tetragonal ThCr₂Si₂ type structure with semiconductor BaZn₂As₂, antiferromagnetic BaMn₂As₂[78] and superconductor (Ba,K)Fe₂As₂[79]. The negligible mismatch of lattice constants in the a-b plane (less than 5%)[20] makes the above materials promising to fabricate multilayer functional heterojunctions. These heterojunctions should have near perfect inter-

![Fig. 10. (Color online) (a) Sketch of the (Ba,K)(Zn,Mn)₂As₂/Pb junctions used for Andreev reflection spectroscopy. The inset is the normalization for the differential conductance G/G₀. (b) Normalized differential conductance G/G₀ spectra (red dot) and their fits to the modified BTK theory (blue line) at selected temperatures at 1.7 K. Adoped from Ref. [67].](image)

![Fig. 11. (colour online) Crystal structures and key physical property of (Ba,K)(Zn,Mn)₂As₂, BaMn₂As₂, BaZn₂As₂ and (Ba,K)Fe₂As₂.](image)
face that enable deep insight of many new physical phenomena and physical rules. Recently, a series of single-phased, single-oriented thin (Ba,K)(Zn,Mn)As₂ films are successfully fabricated by pulsed laser deposition (PLD) on different substrates, e.g. LSAT, SrTiO₃, LaAlO₃, and MgAl₂O₄. A n-type polycrystalline BZA DMSs Ba(Zn,Co)₂As₂[80] was reported recently. All these results offers much research room for many kinds of heterojunctions in the future[4].

4. Summary and outlook

There are three main group of new diluted magnetic semiconductors with independent charge and spin doping, i.e. the “111”, “122” and “1111” type, as listed in Table 1. BZA is unique in that it has T_C above 200 K. Note that there are other four DMSs which are isostructural to BZA but have low T_C. What makes BZA so special is one open question. The accurate answer to the question could be the clue to seek mechanism of DMSs and the guiding light to search for room temperature ferromagnets.

Taking the advantage of lattice matched superconductors, semiconductors and antiferromagnetic compounds, these new types of DMSs have potential to fabricate multilayer heterojunctions[5, 6]. In the roadmap[81] for spintronic materials, BZA is proposed as one of the most promising DMSs material.Two major research fields are recommended for future studies of BZA: (I) to search for Curie temperature higher than room temperature based on the enhancing ferromagnetism interactions; (II) to fabricated isostructural DMSs junctions with various lattice matched materials.

Acknowledgment

We would like to thank the collaborators Prof. Y. J. Uemura, Prof. Yong Qiing Li, Prof. A. Fujimori, Prof. S. Maekawa, Prof. Bo Gu, Prof. Lixin Cao, et al. We are grateful to Prof. L. Yu, F. C. Zhang, J. H. Zhao and F. L. Ning for the helpful discussions. This work is financially supported by Ministry of Science and Technology of China (Nos. 2018YFA03057001, and 2017YFB0405703), National Natural Science Foundation of China through the research projects (No. 11534016).

Guo S L, Zhao Y, Man H Y, et al. µSR investigation of a new diluted magnetic semiconductor Li(Zn,Mn,Cu)As with Mn and Cu codoping at the same Zn sites. *J Phys Condens Matter*, 2016, 28, 366001

Chen L, Yang X, Yang F, et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering. *Nanotech*, 2011, 11, 2584

Dietl T. A ten-year perspective on dilute magnetic semiconductors and oxides. *Nat Mater*, 2010, 9, 965

Zhao K, Chen B, Zhao G, et al. Ferromagnetism at 230 K in (Ba$_{0.5}$Sr$_{0.5}$)$_{2}$Fe$_{2}$As$_{2}$: A new Mn$_{x}$Si$_{2}$-type structure. *Appl Phys Lett*, 2013, 108, 132505

Kuriyama K, Nakamura F. Electrical transport properties and crystal structure of LiZnAs. *Phys Rev B*, 1987, 36, 4439

[60] Suzuk, H., Zhao, K., Shibata, G., et al. Photoemission and x-ray absorption studies of the isostructural to Fe-based superconductors diluted magnetic semiconductor Ba$_{1-x}$K$_x$(Zn$_{1-y}$Mn$_y$)$_2$As$_2$. Phys Rev B, 2015, 91, 140401

[70] Burnus, T., Hu, Z., Hsieh, H. H., et al. Local electronic structure and magnetic properties of LaMn$_{0.5}$Co$_{0.5}$O$_2$ studied by x-ray absorption and magnetic circular dichroism spectroscopy. Phys Rev B, 2008, 77, 125124

[77] Sun, F., Li, N. N., Chen, B. J., et al. Pressure effect on the magnetism of the diluted magnetic semiconductor (Ba$_{1-x}$K$_x$)(Zn$_{1-y}$Mn$_y$)$_2$As$_2$ with independent spin and charge doping. Phys Rev B, 2016, 93, 224403

[83] Man, H., Guo, S., Sui, Y., et al. Ba(Zn$_{1−x}$Mn$_x$Cu$_2$)$_2$As$_2$: A bulk form diluted ferromagnetic semiconductor with Mn and Cu codoping at Zn sites. Sci Rep, 2015, 5, 15507

[85] Yang, X., Chen, Q., Li, Y., et al. Sr$_9$K$_6$(Zn$_{18}$Mn$_2$)$_2$As$_2$: A ferromagnetic semiconductor with colossal magnetoresistance. EPL, 2014, 107, 60007

with large magnetoresistance. J Appl Phys, 2013, 114, 223905

Ding C, Guo S, Zhao Y, et al. The synthesis and characterization of 1111 type diluted ferromagnetic semiconductor (La$_{1-x}$Ca$_x$)-(Zn$_{1-x}$Mn$_x$)AsO. J Phys Condens Matter, 2016, 28, 026003

Ding C, Man H, Qin C, et al. (La$_{1-x}$Ba$_x$)(Zn$_{1-x}$Mn$_x$)AsO: A two-dimensional 1111-type diluted magnetic semiconductor in bulk form. Phys Rev B, 2013, 88, 041102

[97] Lu J, Man H, Ding C, et al. The synthesis and characterization of 1111-type diluted magnetic semiconductors (La$_{1-x}$Sr$_x$)(Zn$_{1-x}$TM$_x$)AsO (TM = Mn, Fe, Co). EPL, 2013, 103, 67011

[99] Guo S, Zhao Y, Gong X, et al. La(Zn$_{1-2x}$Mn$_x$Cu$_x$)AsO: A 1111-type diluted magnetic semiconductor with manganese and copper codoping at Zn sites. EPL, 2016, 114, 57008