Tailored Synthesis of the Narrowest Zigzag Graphene Nanoribbon Structure by Compressing the Lithium Acetylide under High Temperature

Xiao Dong, Lijuan Wang, Kuo Li, Haiyan Zheng, Yajie Wang, Yue Meng, Haiyun Shu, Ho-kwang Mao, Shaomin Feng, and Changqing Jin

‡Center for High Pressure Science and Technology Advanced Research, 100094 Beijing, China
†HPCAT, X-Ray Science Division, Argonne National Lab, Argonne, Illinois 60439, United States
§Geophysical Lab, Carnegie Institution of Washington, Washington, D.C. 20015, United States
∥Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
⊥Collaborative Innovation Centre of Quantum Matter, Beijing 100190, China

ABSTRACT: Scientists are searching for the goal-directed methods to synthesize graphene nanoribbons (GNRs) with a particular edge type and width, which determines their electronic transport properties. A series of Li zigzag GNRs (ZGNRs) with different widths were predicted under high pressure with a stoichiometric ratio of Li$_n$C$_{2n}$, which indicates a route to prepare ultranarrow GNRs. Here, with thermodynamics and ab initio Gibbs free-energy calculations by quasi-harmonic approximation, we investigated the phase stabilities of the Li GNR compounds under high pressure and high temperature. We have also identified Li graphenide LiC$_n$ ($n = \infty$) and Li polyacenide LiC$_4$ ($n = 2$) experimentally at the predicted pressure and temperature conditions using in situ X-ray diffraction, which can be recognized as the two end members of Li$_n$C$_{2n}$ with the widest and narrowest ZGNR structures. High temperature and the temperature gradient increased the degree of polymerization and facilitated the formation of wider GNR or carbon slices. This suggests that by controlling temperature and pressure, we may get ultranarrow Li ZGNRs composed of a limited number of parallel carbon chains, such as 3- or 4-zigzag GNR, which is ready to be protonated or functionalized to form atomically ordered ZGNRs.

INTRODUCTION

Graphene nanoribbons (GNRs), defined as strips of graphene, exhibit exceptional electronic, optical, and magnetic properties. The quantum confinement nature of GNRs offers tunable band gaps, which can be modified by the width and edge structure (zigzag, armchair, or mixed). Among the GNRs, the ultranarrow GNRs, constructed by several parallel carbon chains, have band gaps comparable to typical semiconductors and have potential applications in high-performance field-effect transistors. Currently, the ultranarrow GNRs can only be controllably synthesized by “bottom-up” chemical methods, instead of “top-down” methods such as cutting and unzipping the graphite or carbon nanotubes. The “bottom-up” approach can control and modify the width and edge structure at the atomic scale, and the typical reaction is an aryl–aryl coupling, followed by cyclohydrogenation. However, such reactions are severely limited by the solubility of oligophenylene, as well as the reactivity and regioselectivity. Only appropriate precursors can scalably react to produce GNRs and their products are typically armchair GNRs or coved zigzag GNRs (ZGNRs), as reviewed in the literature. For ideal ZGNRs, there are very few examples, including the 6-ZGNR constructed by six zigzag chains and 2-ZGNR (polyacenes). As the narrowest ZGNR, polyacene is even more difficult to be synthesized, and the longest pure polyacene is heptacene (7-ac). Even if including those stabilized by the matrix or surface, the longest polyacene has only 11 hexagonal rings (undecacene, 11-ac). Because the electronic properties of ultranarrow ZGNRs are significantly affected by the edge states, precise synthesis with clean, easily modified, and designed edges is of great interest, and the synthesis techniques still need to be developed. Carbide is recognized as an important precursor to synthesize novel carbon allotropes, such as graphene, nanotubes, and nanoribbons.
GNR structure with de polyacenide Li3C4 (ZGNRs ...) can be proposed (Figure 1). For example, Li2C2 (chain), VASP code.37 We used a plane-wave kinetic energy cutto...341−

silicide or germanide,26 pure novel carbon allotropes can be synthesis is an e...30−
situation.32 show the correction and universality of QHA for the HPHT approximation (QHA) theoretical calculations and high-pressure (HPHT) experiments to reveal chemical reactions. Here, we employed quasi-harmonic approximation (QHA) theoretical calculations and high-pressure high-temperature (HPHT) experiments to reveal the phase transition tendency of the Li−C system under high temperature and high pressure. Several successful examples show the correction and universality of QHA for the HPHT situation.32−34 The lithium graphenide LiC2 and lithium polyacene Li4Cn (ZGNRs n = ∞ and 2, respectively) were predicted under HPHT and then confirmed by in situ X-ray diffraction (XRD). Our research indicates that HPHT synthesis is an effective method to construct an ultranarrow GNR structure with defined edges and widths.

COMPUTATIONAL AND EXPERIMENTAL METHODS

Structure relaxations were performed using density functional theory (DFT) within the Perdew−Burke−Ernzerhof (PBE) functional35 in the framework of the all-electron projector augmented wave (PAW) method,36 as implemented in the VASP code.37 We used a plane-wave kinetic energy cutoff of 700 eV, and the Brillouin zone was sampled with a resolution of 2π × 0.03 Å−1, which showed excellent convergence of the energy differences, stress tensors, and structural parameters.

The variable compound evolutionary algorithm USPEX,38 used here for predicting new stable structures, searches for the lowest-enthalpy structures at a given pressure. Structure relaxations were performed using DFT within the PBE functional in the framework of the all-electron PAW method, as implemented in the VASP code. The first generation of structures was created randomly. All structures were relaxed at constant pressure and 0 K, and the enthalpy was used as fitness. The energetically worst structures (40%) were discarded and a new generation was created, 30% randomly and 70% from the lowest-enthalpy structures through heredity, lattice mutation, and transmutation. For the QHA calculation, phonon calculations were performed for all promising structures using the PHONOPY code.39 The super cells of 3 × 3 × 3, 2 × 2 × 2, 2 × 2 × 4, 2 × 2 × 2, 1 × 3 × 4, 3 × 3 × 2, 2 × 3 × 1, and 4 × 4 × 3 are used for C, Li2C2, Li2C3, Li4C6, Li3C4, Li5C8, and LiC2, respectively. Each structure is checked to have no imaginary phonon frequencies from 15 to 40 GPa. For each structure, phonons were computed at 31 different volumes to get the equilibrium volume and predict the Gibbs free energy. The Raman frequencies of the lithium carbides were calculated by vasp_raman pyvr at 27 GPa.30

The Li2C2 sample was synthesized from the stoichiometric mixture of the Li metal and graphite powder, which was sealed inside a tantalum tube in a glovebox. The tube was then sealed inside an evacuated quartz tube and heated at 800 °C for 12 h. Phase analysis was performed by powder XRD on a Bruker D8 ADVANCE diffractometer (Cu Kα radiation), and no significant impurities were detected (Figure S1). In situ HPHT XRD experiments were carried out at the 16-ID-B beamline at the Advanced Photon Source (APS), Argonne National Laboratory. A diamond anvil cell (DAC) with a diamond cuet size of 300 μm in diameter was used to apply pressure. Tungsten gaskets were preindented to a thickness of 30 μm, and the center holes with 180 μm diameters were drilled to act as the sample chamber. Li2C2 powder was loaded in a glovebox, and Ar was loaded to improve thermal insulation and quasi-hydrostatic pressure conditions. Ruby fluorescence was used for pressure calibration.31 After Ar was loaded, the sample was checked using Raman spectroscopy and was proved to be Li2C2.31 Then, it was compressed to 27.5 GPa for the HPHT experiments. Another DAC was prepared by using the above-described method and was compressed to 36.5 GPa for the HPHT experiments. To generate high temperatures, the samples were heated on both sides using an infrared laser. The temperature from each side was estimated by collecting the emitted thermal radiation, correcting for the optical system response and fitting the spectral data to Planck’s equation. The temperatures used were recorded from the upstream side of the DAC. The X-ray patterns were collected during laser
heating using a CCD detector calibrated with a CeO₂ standard sample. The wavelength of the incident X-ray was 0.4066 Å. The preliminary data were reduced using the Dioptas program, and the background of the XRD patterns was subtracted. After the in situ XRD experiment, Raman spectra were measured at room temperature without changing the pressure. The wavelength of the incident laser is 488 nm.

RESULTS AND DISCUSSION

First, we used USPEX to predict the thermodynamically stable Li–C phases and obtain the convex hull at 0 K under 27.5 and 36.5 GPa, respectively (Figure 2a,b), which is consistent with the literature. Li₃C₄ and Li₄C₃ are predicted to be stable at 27.5 and 36.5 GPa, respectively, at 0 K, and Li₂C₃ is stable at 27.5 GPa. Their crystal structures and phonon spectra are also presented in Table S1 and Figure S2, respectively, with no imaginary frequency discovered. Then, we used the QHA method to study the Gibbs free energies of all candidate phases including C, LiC₂, Li₂C₃, Li₃C₄, Li₂C₂, and Li₄C₃, to evaluate their thermodynamic stabilities at HPHT. As shown in Figure 2, both the convex hulls at 27.5 and 36.5 GPa vary significantly from 0 to 2500 K. With increasing temperature, LiC₂ becomes more stable, whereas Li₃C₄ is less stable.

On the basis of Gibbs free energies calculated under HPHT, we summarize the phase diagram of the carbon-rich phases, LiC₂, Li₂C₃, and Li₃C₄ in Figure 3. LiC₂ is predicted to be stable in the whole investigated area. LiC₂ becomes thermodynamically stable at HPHT. The transition temperature of LiC₂ is 2334 K at 29 GPa and decreases to 1410 K at 40 GPa. LiC₂ (Li polyaceneid) will decompose at high temperature. The decomposition temperature is 1516 K at 20 GPa and linearly increases to 2665 K at 40 GPa.

Thus, the two decomposition lines of LiC₂ and Li₃C₄ divide the phase diagram into four zones. At low temperature (zone IV), Li₃C₄ is stable and LiC₂ is decomposed, which is consistent with previous theoretical calculations. At low pressure and high temperature (zone II), both Li₃C₄ and LiC₂ decompose. Under high pressure and intermediate temperature, LiC₂ and Li₃C₄ coexist (zone III). The last zone (zone I) is for intermediate pressure and high temperature, where Li₃C₄ decomposes and LiC₂ is stable. The QHA calculations suggest that high temperature promotes polymerization and stabilizes wider GNR or carbon slices.

This phenomenon results from the structural features of these Li GNRs. For LiC₄, carbon atoms are connected along the ribbon by C–C covalent bonds. In the other two directions perpendicular to the ribbon, the atoms are connected by the ionic interactions between the GNR and Li cations. For comparison, LiC₂ (Li graphenide) has a 2D covalent-bond sheet and ionic interaction between Li and the graphene sheet in the third direction. Compared to ionic bonds, covalent bonds are harder to stretch with temperature, so LiC₂ has a smaller thermal expansion coefficient and a smaller volume increase at high temperature and becomes energetically favored under high pressure.

To confirm these predicted structures, we conducted in situ HPHT XRD experiments. Crystalline powder LiC₂ was compressed to 27.5 and 36.5 GPa, respectively, at room temperature and heated up (Figure 4a,b). As shown in Figure 4a, at 27.5 GPa and room temperature, most of LiC₂ transforms to the amorphous state, and only some residues are left (the blue arrows in Figure 4a). Most of the XRD peaks were ascribed to Ar and Li₂O (black and red arrows in Figure 4a). When heated up, several new peaks arose (represented by the asterisks) and indicated the formation of crystalline phase(s). By comparing the diffraction patterns collected under high temperature, we selected a pattern (1696 K) with sharp diffraction peaks and minor impurities. These diffraction peaks were indexed with a hexagonal P6/mmm lattice, a = b = 2.49193(13) Å and c = 3.3823(2) Å. By performing a series of crystallographic analysis, the crystallographic phase was determined as Li graphenide (LiC₂, Figure 1), and the Rietveld refinement plot is shown in Figure 5a.

At 36.5 GPa, Li₃C₄ also experienced a similar process. New peaks (indicated by the asterisks in Figure 4b) gradually emerged above 1400 K and became stable when heated up to above 1800 K, which indicates a thermodynamic equilibrium.

Figure 2. Convex hull of the Li–C system at (a) 27.5 and (b) 36.5 GPa at different temperatures, which are shifted by 0.08 eV/atom. The open symbols represent metastable phases. The solid symbols represent thermal stable phases, that is, on the convex hull line. The blue line represents the decompositions line of 2LiC₂ = Li₂C₃ + C. In zones I and III, LiC₂ is stable, and in zones III and IV, Li₃C₄ is stable.
After cooling down, the peaks are maintained, indicating that the new phase is stable at room temperature. By comparing the diffraction patterns to those of the predicted phases, we found that the predicted Li$_3$C$_4$ (Immm) phase fits the XRD pattern (36.5 GPa and 2010 K) very well. The Rietveld refinement results are shown in Figure 5b, and the lattice parameters are $a = 11.4944 \text{ Å}$, $b = 3.0525 \text{ Å}$, and $c = 2.464 \text{ Å}$. As shown in Figure 6a, the carbon atoms in Li$_3$C$_4$ polymerize into polyacenide, the nanoribbon with two zigzag chains, which is referred to as the first-order structural unit. The Li cations are closely fitted between the (half) six-membered rings of neighboring ribbons, connecting the ribbons together and forming a second-order structural unit (the purple region in Figure 6a), which is neutral in charge. These Li cations form rectangular lattices as shown in the dashed line in Figure 6a. When the second-order structural units are stacked, the Li cations between the (half) six-membered rings are against the centers of the neighboring Li rectangles, that is, the negatively charged secondary carbon is located on the edge of GNR. Actually, this Li–C (1.957 Å) distance is even shorter than the nearest Li–Li distance (2.301 Å) between the neighboring second-order units (Figure 6a), which is likely to result from significant electrostatic attraction and hence stabilizes the whole crystal.

Nominally, the C atom in Li$_3$C$_4$ has an oxidation state of 3/4 supposing Li keeps +1. Theoretical calculation shows that the carbon atoms on the edge and in the middle have Bader charges of -0.76 and -0.45, respectively, whereas the Li atoms have Bader charges of $+0.81$. Li$_3$C$_4$ is predicted to be metallic with a conductive charged GNR, as shown in Figure 6b. The nonintegral oxidation state of carbon suggests an important rule under high pressure: effective stacking becomes more important compared to a traditional stoichiometry/integral oxidation state.

A metastable Li$_2$C$_2$ polyacenide GNR phase was also predicted, as shown in Figure 7. It has a similar second-order structural unit with Li$_3$C$_4$, but with another layer of Li between them (indicated by the dashed circles in Figure 7), which may be responsible for the instability. Its fragment was identified when compressed under room temperature. By comparing the structural similarities of this Li$_2$C$_2$ and Li$_3$C$_4$, we propose the following reaction process: C$_2^2$ in Li$_2$C$_2$ tends to polymerize under external pressure and forms ZGNR fragments in amorphous Li$_2$C$_2$ at room temperature. When heated up, the fragments start to connect to form ZGNRs, 1/4 of Li is excluded, and the Li GNRs are crystallized in the most energetically preferred structure, Li$_3$C$_4$.

It is worth noting that the predicted Li$_2$C$_3$ was not observed in our experiment. From thermodynamic rules, when Li$_3$C$_4$ is thermodynamically stable, Li$_2$C$_3$ should not appear in the
sample with Li/C = 1:1. However, at 27.5 GPa, we observed LiC_2, whose composition deviates even further away from 1:1. This is most likely due to compositional segregation. A significant amount of Li atoms may migrate outside the laser irradiation (and hence incident X-ray beam), and the composition left is carbon-rich. The possible reason of migration may include temperature and pressure gradient, which is still under investigation.

We also characterized the samples using Raman spectroscopy. The sample under 27.5 GPa does not show obvious features but high background (Figure 8). The sample under 36.5 GPa shows a series of peaks below 1300 cm\(^{-1}\), with the strongest peak at ~1288 cm\(^{-1}\). We calculated the Raman spectra of several lithium carbides and selected those with peaks in the range of 1200–1350 cm\(^{-1}\) for comparison. Most of these carbides are polycarbides with ribbon (Li_2C_2, Li_3C_4, Li_2C_3, and LiC_2) or chain structures (Li_2C_2 zigzag, Li_3C_4, and LiC_2), and this peak most likely indicates the ribbon structure. Among them, Li_3C_4 is the best candidate, though other phases cannot be excluded. This supports our discovery using in situ XRD. For LiC_2, only one peak at 1520 cm\(^{-1}\) is predicted, and it is not surprising that it was not observed because LiC_2 is metallic.

In the current experiment, we tested two P–T points and observed the two members of Li_n+1C_2n with n = 2 and \(\infty\). We can expect more Li ZGNRs with various widths, by testing more points between 27.5 and 36.5 GPa and between 300 and 2200 K and by controlling the ratio of Li and carbon, temperature gradient, time, rate of heating, and so on. On one hand, the ZGNRs in Li_n+1C_2n have identical edges. When lithium is removed, pure ultranarrow ZGNRs would be obtained. On the other hand, these Li GNs have negative charges on the ribbons, which suggests that they are very good nucleophilic reagents and very easy to react with protic solvents including water and alcohol or other regents with a positive charge. This will be a useful method to obtain a neutral ZGNR with controlled atomic width and will also be a method to synthesize functionalized GNs.

In conclusion, we have theoretically predicted and experimentally synthesized two phases containing ZGNR structures, graphene compounds LiC_2 and polycarane Li_3C_4 by subjecting LiC_2 under HPHT conditions using the technique of laser-heated DAC. Their crystal structures under HPHT have been determined as closely packed ZGNR and Li\(^{+}\), in agreement with ab initio Gibbs free-energy calculation by QHA. On the basis of the calculation, several Li ZGNRs with a stoichiometric ratio of Li_n+1C_2n have also been investigated, which are the intermediate phases between lithium polycarane Li_3C_4 and lithium graphenide LiC_2. It is expected that with precise control of temperature and pressure, we can obtain lithium ZGNRs with an expected width, which will shed light on the "bottom-up" synthesis of ZGNRs with atomic ordering and a controlled width.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.8b04081.

- XRD pattern of synthesized LiC_2 raw material; phonon spectrum of Li_3C_4 and Li_5C_4 at 30 GPa; and crystal structures of the optimized Li_2C_2, Li_3C_4, and Li_2C_3 phases (PDF)

AUTHOR INFORMATION

Corresponding Authors

* E-mail: likuo@hpstar.ac.cn (K.L.).
* E-mail: zhenghy@hpstar.ac.cn (H.Z.).

ORCID

Kuo Li: 0000-0002-4859-6099
Haiyan Zheng: 0000-0002-4727-5912

Author Contributions

X.D. and L.W. contributed equally. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge the support of the National Natural Science Foundation of China (NSFC) (grant nos. 21771011, 21501162, and 21601007). The authors also acknowledge the support from the Top 1000-Talents Award. A portion of this
REFERENCES

