LaMn$_3$Ni$_2$Mn$_2$O$_{12}$: An A- and B-Site Ordered Quadruple Perovskite with A-Site Tuning Orthogonal Spin Ordering

Yun-Yu Yin, Min Liu, Jian-Hong Dai, Xiao Wang, Long Zhou, Huibo Cao, Clarina dela Cruz, Chien-Te Chen, Yuani Xu, Xi Shen, Richeng Yu, José Antonio Alonso, Angel Muñoz, Yi-Feng Yang, Changqing Jin, Zhiwei Hu, and Youwen Long

INTRODUCTION

A-Site ordered perovskites with a chemical formula of AA$'$$_3B_4O_{12}$ exhibit a wide variety of interesting physical properties such as intermetallic charge transfer, charge disproportionation, colossal magnetoresistance, a huge dielectric constant, negative thermal expansion, multiferroicity, etc.\cite{1-14} Compared with a simple ABO$_3$ perovskite in which the A site is usually occupied by a larger alkali metal, alkaline earth, or rare earth, the A$'$ site in the ordered perovskite AA$'$$_3B_4O_{12}$, like the B site, can accommodate a transition metal (TM) ion with a smaller ionic radius. As a result, heavily tilted BO$_6$ octahedra and square-coordinated A$'$ site in the ordered perovskite AA$'$$_3B_4O_{12}$ exhibit a wide variety of interesting physical properties such as intermetallic charge transfer, charge disproportionation, colossal magnetoresistance, a huge dielectric constant, negative thermal expansion, multiferroicity, ferrimagnetic Cu$^2+$ interactions usually occur in ACu$_3$B$_4$O$_{12}$, giving rise to a single magnetic transition. The long-range FM behavior has never been found in the family of AMn$_{10}$B$_4$O$_{12}$.

In 3d TM oxides, the well-known Goodenough–Kanamori (GK) rules\cite{19,20} can often give a feasible determination of the sign of spin superexchange interactions. For example, in the B-site ordered double perovskite A$_2$NiMnO$_6$ family (A = Sc, In, Y, Bi, or a rare earth) with Ni$^{2+}$ ($t_{2g}^3e_g^1$) and Mn$^{4+}$ ($t_{2g}^3e_g^3$) electronic configurations, the GK rules predict a FM interaction between the half-filled e_g orbitals of Ni$^{2+}$ and the empty e_g orbitals of Mn$^{4+}$ via a straight (or close to straight) Ni$^{2+}$–O–
The magnetism changes from canted FM coexisting FM and ferroelectric properties was successfully designed and prepared for the first time under high-pressure conditions. Our measurements show that the Ni²⁺−O−Mn⁴⁺ bonding becomes close to 90°. On the basis of this criterion, a multiferroic compound Bi²NiMnO₆ with magnetic ions (A and B-site) ordered quadruple perovskite systems discovered so far. Theoretical calculations reveal that the competing exchange interactions among the three different magnetic ions (A'-site Mn³⁺, B-site Ni³⁺, and B'-site Mn⁴⁺) are mainly responsible for this unique spin feature.

EXPERIMENTAL AND CALCULATION SECTION

Polycrystalline sample LMNM was prepared from highly pure (>99.9%) La₂O₃, Mn₂O₃, MnO₂, and NiO starting materials with a 1:3:4:4 mole ratio. The finely mixed starting materials were charged into a gold capsule and treated at 8 GPa and 1400 K for 60 min in a cubic anvil-type high-pressure apparatus. Then the reaction was quenched to room temperature (RT) before the pressure was slowly released. X-ray powder diffraction (XRD) was performed on a Rigaku diffractometer equipped with Cu Kα radiation. The obtained XRD data were analyzed by the Rietveld method with the GSAS program. High-resolution selected area electron diffraction (SAED) was performed at RT along the [100] zone axis by a Philips-CM200 field emission transmission electron microscope. The valence states of Mn and Ni ions at RT were determined by soft X-ray absorption spectroscopy (XAS) at the Mn-L₂₃ and Ni-L₂₃ edges measured at the Dragon beamline of the Taiwan National Synchrotron Research Center. Temperature-dependent neutron powder diffraction (NPD) was measured at HB-2A at the High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory (ORNL) with a wavelength of 2.4 Å. The diffraction data were collected at 300, 200, 40, and 3 K. The FullProf program was used to refine the NPD data on the basis of the Rietveld method. The magnetic susceptibility and magnetization were measured in a superconducting quantum interference device magnetometer (Quantum Design, MPMS-VSM). Both zero-field cooling (ZFC) and field cooling (FC) modes were used to measure the magnetic susceptibility between 2 and 300 K at 0.01 and 1 T. Magnetization was measured at fields ranging from −7 to 7 T at selected temperatures of 100, 60, 40, and 2 K. Specific heat (C_p) data were collected by a pulse relaxation method on a physical property measurement system calorimeter (Quantum Design, PPMS-9T). Different magnetic fields (0 and 1 T) were applied for this measurement upon cooling from 75 to 2 K.

The electronic structures were analyzed by density functional theory (DFT) calculations using the full-potential linearized augmented plane-wave (LAPW) method, with the augmented plane-wave plus local orbital implementation in both the WIEN2K code and the noncollinear WIEN2k code. To include the strong correlations in the transition metal elements, we took the generalized gradient approximation Perdew, Burke, and Ernzerhof (GGA-PBE) exchange correlation potential with effective Coulomb repulsions (U_eff) of 3.0 eV for Mn and 5.0 eV for Ni in the GGA + U calculations with a method of self-interaction correction introduced by Anisimov. The muffin tin radii are 2.50 au for La, 1.90 au for Mn, 2.00 au for Ni, and 1.60 au for O. The maximal modulus for the reciprocal vectors (K_max) was chosen such that RMT × K_max = 8.0. The lattice parameters and ionic positions derived from the NPD refinement at 3 K were used in the calculations without performing any structural or ionic relaxations. The Brillouin zone samplings were checked by directly increasing the density of the k-point meshes until convergence was reached, that is, until the changes in calculated properties were insignificant. Finally, 1000 k-point meshes in the Brillouin zone were used.

RESULTS AND DISCUSSION

The high-pressure product LMNM we made was found to be insulating with a resistivity (ρ) of >10⁸ Ω cm⁻¹ at RT. The sample quality and crystal structure were characterized by XRD, SAED, and NPD. Figure 3a shows the XRD pattern measured at RT. Because of the similar scattering factors of Ni and Mn, the X-ray is not sufficiently sensitive to distinguish the ordered...
distribution for these two atoms. The SAED was thus measured as presented in the inset of Figure 3a. One can find bright diffraction spots with \(h + k + l = \text{odd}\) such as the (111) spot, providing convincing evidence of the B-site ordered distribution between Ni and Mn in a rocksalt-type manner. The Rietveld analysis for the XRD pattern further reveals that LMNM crystallizes in both A- and B-site ordered AA'\(_2\)B\(_2\)O\(_{12}\)-type quadruple perovskite structures in space group \(\text{Pn}3\) (No. 201). As shown in Figure 1, in this crystal symmetry, the A-site La and A'-site Mn occupy the fixed 2a (0.25, 0.25, 0.25) and 6d (0.25, 0.75, 0.75) sites while the B-site Ni and B'-site Mn occupy the fixed 4f (0, 0, 0) and 4c (0.5, 0.5, 0.5) sites, respectively. Furthermore, this specially ordered perovskite structure can be confirmed by NPD as shown in Figure 3b, where the characteristic peaks reflecting the rocksalt-type B-site ordering like (111) and (311) peaks present sharply. The high-pressure product LMNM thus possesses the same crystal structure found in CaCu\(_3\)Ga\(_2\)Sb\(_2\)O\(_{12}\)\(^{40}\) and Ca-Cu\(_2\)Fe\(_2\)Re\(_2\)O\(_{12}\)\(^{41}\). The structural refinements based on the NPD data obtained at 300 K show a nearly ideal 1:3 ordering between the A-site La and A'-site Mn ions (i.e., these two sites are almost fully occupied by La and Mn, respectively), and the 4c B' site is also nearly completely occupied by Mn. As far as the 4b B site is considered, a small amount of Mn (~11\%) is found to substitute for the Ni site. In addition, the occupancy factor of oxygen is very close to unity, suggesting that our LMNM is chemically stoichiometric. The refined structural parameters are listed in Tables 1 and 2. On the basis of the related bond lengths, the bond valence sum (BVS)\(^{42,43}\) calculations indicate the charge combination to be LaMn\(^{3+}\)\(_2\)Ni\(^{2+}\)\(_2\)Mn\(^{4+}\)\(_2\)O\(_{12}\) \([+2.98\text{ for the A'-site Mn, } +2.15\text{ for the B-site Ni, and } +3.97\text{ for the B'-site Mn at 300 K (see Table 2)}]\), in agreement with the XAS measurements shown below. It means that the strong JT-distorted Mn\(^{3+}\) ions occupy the square-coordinated A'O\(_4\) units, while the tilted but rigid BO\(_6\) triangle makes the site occupation factor of oxygen very close to unity, suggesting that our LMNM is chemically stoichiometric.

![Figure 3. Rietveld refinements for (a) the XRD pattern recorded at RT and (b) the NPD pattern recorded at 300 K for LMNM. The observed (red circles), calculated (black line), and difference (blue line) values are shown. Allowed Bragg reflections are indicated by ticks (top). The lower ticks shown in panel b present the small amount of impurity phase NiO (<1.2 wt %). The inset in panel a shows an SAED pattern along the [1 1 0] zone axis taken at RT.](image)

Table 1. Structural Parameters Obtained from the Rietveld Refinements of NPD (3, 40, 200, 300 K) and XRD (RT) Data for LMNM\(^a\)

<table>
<thead>
<tr>
<th>(T) (K)</th>
<th>(3)</th>
<th>(40)</th>
<th>(200)</th>
<th>(300)</th>
<th>RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>space group</td>
<td>(\text{Pn}3)</td>
<td>(\text{Pn}3)</td>
<td>(\text{Pn}3)</td>
<td>(\text{Pn}3)</td>
<td>(\text{Pn}3)</td>
</tr>
<tr>
<td>(a) (Å)</td>
<td>7.35692(20)</td>
<td>7.35860(9)</td>
<td>7.36198(12)</td>
<td>7.36863(8)</td>
<td>7.37478(3)</td>
</tr>
<tr>
<td>(O_x)</td>
<td>0.2590(3)</td>
<td>0.2583(2)</td>
<td>0.2582(2)</td>
<td>0.2592(2)</td>
<td>0.254(10)</td>
</tr>
<tr>
<td>(O_y)</td>
<td>0.42888(4)</td>
<td>0.4271(3)</td>
<td>0.4269(2)</td>
<td>0.4275(3)</td>
<td>0.4340(5)</td>
</tr>
<tr>
<td>(O_z)</td>
<td>0.5596(4)</td>
<td>0.5607(2)</td>
<td>0.5608(2)</td>
<td>0.5608(2)</td>
<td>0.5673(5)</td>
</tr>
<tr>
<td>(G) (Ni(_{\text{A}}))</td>
<td>0.890</td>
<td>0.890</td>
<td>0.890(4)</td>
<td>0.912(6)</td>
<td>0.96(13)</td>
</tr>
<tr>
<td>(G) (Mn(_{\text{A}}))</td>
<td>0.110</td>
<td>0.110</td>
<td>0.110(4)</td>
<td>0.088(6)</td>
<td>0.088(11)</td>
</tr>
<tr>
<td>(G) (Ni(_{\text{B}}))</td>
<td>0.014</td>
<td>0.014</td>
<td>0.014(4)</td>
<td>0.001(1)</td>
<td>0.03(11)</td>
</tr>
<tr>
<td>(G) (Mn(_{\text{B}}))</td>
<td>0.986</td>
<td>0.986</td>
<td>0.986(4)</td>
<td>0.999(1)</td>
<td>0.91(15)</td>
</tr>
<tr>
<td>(G) (O)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.04(2)</td>
<td>1.043(10)</td>
</tr>
<tr>
<td>(M) (Mn(_{\text{A}})) (μ(_B))</td>
<td>2.94(5)</td>
<td>1.60(4)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(M) (Ni(_{\text{A}})) (μ(_B))</td>
<td>0.65(3)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(M) (Mn(_{\text{B}})) (μ(_B))</td>
<td>0.44(3)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(\rho_\text{a}(\text{La})) (Å(^2))</td>
<td>0.200</td>
<td>0.12(12)</td>
<td>0.30(11)</td>
<td>1.00(15)</td>
<td>0.014(6)</td>
</tr>
<tr>
<td>(\rho_\text{a}(\text{Mn}(_{\text{A}}))) (Å(^2))</td>
<td>0.200</td>
<td>1.5(1)</td>
<td>1.58(12)</td>
<td>1.40(17)</td>
<td>0.016(3)</td>
</tr>
<tr>
<td>(\rho_\text{a}(\text{Ni}(_{\text{A}}))) (Å(^2))</td>
<td>0.400</td>
<td>0.42(6)</td>
<td>0.38(7)</td>
<td>0.62(13)</td>
<td>0.017(7)</td>
</tr>
<tr>
<td>(\rho_\text{a}(\text{Mn}(_{\text{B}}))) (Å(^2))</td>
<td>0.200</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.008(3)</td>
</tr>
<tr>
<td>(\rho_\text{a}(\text{O})) (Å(^2))</td>
<td>0.250</td>
<td>0.37(8)</td>
<td>0.43(10)</td>
<td>0.46(17)</td>
<td>0.014(5)</td>
</tr>
<tr>
<td>(\chi^2)</td>
<td>6.26</td>
<td>2.39</td>
<td>1.64</td>
<td>4.51</td>
<td>3.49</td>
</tr>
<tr>
<td>(R_p) (%)</td>
<td>7.98</td>
<td>6.13</td>
<td>5.03</td>
<td>6.88</td>
<td>12.49</td>
</tr>
<tr>
<td>(R_w) (%)</td>
<td>6.35</td>
<td>4.83</td>
<td>3.84</td>
<td>5.44</td>
<td>10.24</td>
</tr>
</tbody>
</table>

\(^a\)Space group \(\text{Pn}3\) (No. 201), origin choice 2, where the atomic positions are La 2a (0.25, 0.25, 0.25), Mn 6d (0.25, 0.75, 0.75), Ni 4f (0, 0, 0), Mn 4c (0.5, 0.5, 0.5), and O 24h (x, y, z). G represents the site occupation factor; M represents the ionic spin moment. The site occupancy for O was refined for the 300 K NPD pattern, resulting in a stoichiometric value within 2 times the standard deviation. For the lower temperatures, it was fixed to unity.
Table 2. Selected Bond Lengths and Angles and BVS Calculations for LMNM Obtained from Rietveld Refinements of NPD Data

<table>
<thead>
<tr>
<th>T (K)</th>
<th>3</th>
<th>40</th>
<th>200</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn6−→O (Å)</td>
<td>1.909(1)</td>
<td>1.908(5)</td>
<td>1.908(4)</td>
<td>1.912(9)</td>
</tr>
<tr>
<td>Mn6−→O (Å)</td>
<td>2.751(4)</td>
<td>2.755(1)</td>
<td>2.756(5)</td>
<td>2.756(1)</td>
</tr>
<tr>
<td>Ni4−→O (Å)</td>
<td>3.296(3)</td>
<td>3.304(9)</td>
<td>3.306(2)</td>
<td>3.303(6)</td>
</tr>
<tr>
<td>Ni4−→O (Å)</td>
<td>2.028(3)</td>
<td>2.025(2)</td>
<td>2.026(7)</td>
<td>2.033(9)</td>
</tr>
<tr>
<td>Mn6−→O (Å)</td>
<td>1.905(5)</td>
<td>1.910(3)</td>
<td>1.911(4)</td>
<td>1.905(7)</td>
</tr>
<tr>
<td>Mn6−→O (Å)</td>
<td>102.7(4)</td>
<td>102.6(7)</td>
<td>102.6(8)</td>
<td>102.7(1)</td>
</tr>
<tr>
<td>Ni4−→O (deg)</td>
<td>107.9(7)</td>
<td>108.1(6)</td>
<td>108.1(8)</td>
<td>107.8(5)</td>
</tr>
<tr>
<td>Ni4−→O (deg)</td>
<td>113.2(6)</td>
<td>113.1(1)</td>
<td>113.1(5)</td>
<td>113.3(5)</td>
</tr>
<tr>
<td>Ni4−→O (deg)</td>
<td>138.4(6)</td>
<td>138.4(1)</td>
<td>138.3(6)</td>
<td>138.4(9)</td>
</tr>
</tbody>
</table>

BVS (Mn4) = +3.009(3) +3.010(9) +3.010(3) +2.978(7)
BVS (Ni4) = +2.181(8) +2.200(1) +2.191(2) +2.149(1)
BVS (Mn6) = +3.974(4) +3.922(1) +3.910(5) +3.971(2)

The BVS values were calculated using the formula $V_i = \sum_j S_{ij}$ and $S_i = \exp((r_i - r_0)/0.37)$. In LMNM, $r_0 = 1.760$ Å for Mn6, $r_0 = 1.753$ Å for Mn4, and $r_0 = 1.654$ Å for Ni4. For Mn6, 12-coordinated oxygen atoms were used. For Ni4 and Mn6, 6-coordinated oxygen atoms were used.

and B′O6 octahedra accommodate the non-JT-distorted ions Ni2+ (t2g6 eg2) and Mn4+ (t2g5 eg0), respectively.

XAS is sensitive to the valence state and local environment of 3d TM ions. To further check the oxidation states of Mn and Ni ions in LMNM, soft XAS was measured. As shown in Figure 4a, the Ni L2,3 spectrum of LMNM lies at the same energy as that of the divalent reference PbNi2+O3 but is shifted by more than 1 eV to an energy lower than that of the trivalent reference Nd2Li0.5Ni3+O4,45,46 confirming the Ni2+ valence state in LMNM. Furthermore, the multiplet spectral structure of Ni2+ (black) and Mn4+ (blue) is observed in spectra of LMNM together with the references YMn3+Al2O12 (orange) and SrMn4+O3 (blue). The dotted line shows a simple superposition of YMn3+Al2O12 and SrMn4+O3 with a 3:2 ratio.

Figure 4b shows the Mn L2,3 XAS spectra of LMNM together with the A-site ordered perovskite YMn3+Al2O12 (YMA)28 as a Mn3+ reference with MnO6 square local coordination and SrMnO3 as a Mn4+ reference with MnO6 octahedral local coordination.28 One can see a gradual higher-energy shift from the divalent reference PbNi2+O3 to the trivalent reference Nd2Li0.5Ni3+O4,45,46 confirming the Ni2+ valence state in LMNM. Furthermore, the multiplet spectral structure of Ni2+ (black) and Mn4+ (blue) is observed in spectra of LMNM together with the references YMn3+Al2O12 (orange) and SrMn4+O3 (blue). The dotted line shows a simple superposition of YMn3+Al2O12 and SrMn4+O3 with a 3:2 ratio.

Because three different atomic sites (A′, B′, and B′′) are accommodated by magnetic TM ions, it is interesting to study the spin interactions occurring among them. Figure 5a shows the temperature dependence of magnetic susceptibility measured at different fields. At first glance, the susceptibility just experiences a single FM-like sharp increase at low temperatures. At a small applied field of 0.01 T, the ZFC and FC susceptibility curves are separated from each other below the transition temperature. However, if a larger field (e.g., 1 T) is applied to overcome the domain wall energy, these two curves become coincident. In addition, when we examine the second derivative of the inverse susceptibility measured at 0.01 T as a function of temperature, one can find two clear anomalies (inset of Figure 5a), implying double magnetic phase transitions. To further confirm these two possible spin transitions, the specific heat was measured at zero field and 1 T. As shown in Figure 5b, two sharp δ-type anomalies are also observed in specific heat near $T_N \approx 46$ K and $T_C \approx 34$ K at zero field. When a magnetic field is applied, T_N is nearly unchanged whereas T_C significantly increases. On the basis of these features, we conclude that LMNM experiences a long-range AFM transition around 46 K and then another FM-like transition at ~34 K.

The magnetization data provide additional evidence of these two successive spin transitions. As shown in Figure 5c, the linear magnetization behavior above T_N is indicative of the paramagnetism. Between T_N and T_C, there is no canonical magnetic hysteresis, while some short-range FM coupling is observed as characterized by the magnetization curve measured at 40 K. Below T_C, however, the magnetic hysteresis loop is observed, confirming the long-range FM-like feature. At the lowest temperature we measured (2 K), the spin moment is not...
completely saturated as the field increases to 7 T, suggesting the coexisting FM and AFM interactions at lower temperatures. When the AFM contribution is subtracted by a linear extrapolation (see the solid line in Figure 5c), the saturated FM moment is estimated to be 6.6 μB. As mentioned above, in the A-site ordered AMn₃B₄O₁₂ family, the A′-site Mn³⁺ ions often induce an independent AFM ordering. The AFM transition occurring in LMNM thus most probably originates from the spin ordering of the A′-site Mn³⁺ sublattice. On the other hand, the adjacent Ni²⁺ ions with eg² electrons and the Mn⁴⁺ ions with empty eg orbitals can generate FM interactions, so the FM-like phase transition of LMNM should be related to the spin interactions of the B/B′-site Ni²⁺/Mn⁴⁺ sublattices. A collinear FM coupling between Ni²⁺ and Mn⁴⁺ will produce a 10.0 μB saturation moment in a local electronic model in the insulating LMNM. The reduced moment observed in the experiment may suggest a noncollinear FM alignment, as will be revealed by NPD. In addition, the ZFC and FC susceptibility curves measured at 0.01 T separate from each other just below Tₐ not below Tₐ, also agreeing with a noncollinear FM structure as well as a collinear AFM one.

Temperature-dependent NPD was performed to clarify the specific spin structures. A detailed magnetic group theory analysis of the NPD data of LMNM is described in the Supporting Information. As shown in Figure 6a, the NPD pattern obtained at 200 K is essentially similar to that measured at 300 K. However, new neutron diffraction peaks like the (100) peak arising from the special spin ordering are observed at 40 K (below Tₐ). The magnetic ordering between Tₐ and Tₐ has thus been investigated from the NPD pattern obtained at this temperature on the basis of the Rietveld method. After the different solutions listed in Table S1 are checked, the best solution is obtained if only the Mn magnetic atoms at the 6d site are ordered with the basis vectors given byΓ₈, where the coupling among the magnetic moments is m₁ₓ = m₂ₓ = m₃ₓ = −m₄ₓ = −m₅ₓ = −m₆ₓ. It means that the Mn atoms linked by the inversion center have their magnetic moments antiferromagnetically coupled. This solution is quite consistent with the magnetic and specific heat measurements. The results of the fitting are listed in Table S3. The good agreement between the experimental and calculated NPD data is presented in Figure 6b. Therefore, at 40 K, the magnetic structure determined from the NPD pattern corresponds to a collinear G-type AFM structure, in which each Mn³⁺ spin is antiferromagnetically coupled with the surrounding neighbors (Figure 7a). Note that some other AMn₃B₄O₁₂ perovskites such as LaMn₃Cr₄O₁₂ and YMn₃Al₄O₁₂ also have similar G-type AFM structure for the A′-site Mn³⁺ ions. If we assume that, at 40 K, the Ni atoms of the 4b site and the Mn atoms of the 4c site in LMNM also contribute to the magnetic ordering, it is not possible to correctly fit the experimental data. Therefore, we conclude that at Tₐ, first only the Mn³⁺ ions at the site 6d are ordered, and the rest of the magnetic ions become ordered at a lower temperature.

According to the magnetic susceptibility and specific heat measurements, another magnetic phase transition is observed at Tₐ ≈ 34 K, although no essential change is observed in the
Figure 7. Schematic view of (a) the G-type AFM structure of the A’-site Mn$^{3+}$ (gray), (b) the orthogonally ordered spin structure composed of the B-site Ni$^{2+}$ (red) and the B’-site Mn$^{4+}$ (blue), and (c) the total spin structure composed of the A’, B-, and B’-site magnetic ions. For the sake of clarity, O and La have been omitted from the structures.

magnetic Bragg reflections of the NPD pattern collected at 3 K compared with that at 40 K, except an increase in the intensity (Figure 6c). As shown in Figure S1, when we examine the normalized NPD intensity as a function of temperature for magnetic peaks (100) and (111), the diffraction intensity for these two peaks sharply increases around T_m and then divergence occurs below T_m. These features may also suggest two magnetic phase transitions. When the NPD pattern collected at 3 K is fitted, the best agreement is obtained if it is assumed that the 6d sublattice (i.e., A’-site Mn$^{3+}$) remains ordered with the same magnetic structure as that determined at 40 K and the 4b (B-site Ni$^{2+}$) and 4c (B’-site Mn$^{4+}$) sublattices are ordered according to the basis vectors of Ψ_{27} in Γ^7. The coupling among the magnetic moments for sites 4b and 4c shows a net FM component originating from the orthogonal spin ordering in the B and B’ sites (Figure 7b), in good agreement with the magnetization measurements.

Therefore, the total spin structure of LMNM below T_c contains the G-type arrangement concerning the A’-site Mn$^{3+}$ cations, with the additional ordering of the B/B’-site Ni$^{2+}$/Mn$^{4+}$ sublattices exhibiting an “umbrella”-like perpendicular magnetic structure, in such a way that there is a resulting FM component along the a axis (Figure 7c). The LMNM presented here thus provides the first example with orthogonal spin ordering in all of the A’-site (and B-site) ordered perovskite systems yet discovered. In this spin structure model, the net local spin moment caused by the 90$^\circ$ canted Ni$^{2+}$ and Mn$^{3+}$ spins is theoretically 7.07 μ_B for the B-site Ni$^{2+}$ (S = 1), and 0.44(3) μ_B for the B’-site Mn$^{4+}$ (S = 7/2). These values, especially the B- and B’-site moments, are considerably smaller than the spin-only expected ones. This may be attributed to the small amount of B- and B’-site disorder as well as the strong spin frustrations, as discussed below. In addition, the FM-like ordering caused by the Ni$^{2+}$–O–Mn$^{3+}$ pathway in LMNM is found to deviate from the magnetic evolution criterion exhibited by members of the A_2NiMnO_6 family. As shown in Figure 2, the Ni$^{2+}$–O–Mn$^{3+}$ bond angle in LMNM is 138.5$^\circ$, which is located in the AFM region in the A_2NiMnO_6 series. This extraordinary deviation may suggest that the A’-site magnetic ions play some roles for the B- and B’-site magnetic interactions in LMNM.

To improve our understanding of the specific spin interactions among the three different transition metals in LMNM, first-principles theoretical calculations were performed on the basis of the structural parameters determined from NPD data at 3 K. For the sake of simplicity, we used the collinear magnetic configurations to calculate the specific spin interactions as described in detail in the Supporting Information. Actually, similar calculations were also adopted for Sr$_2$CoOsO$_6$, which possesses a noncollinear spin structure, too. As shown in Figure 8a, eight potentially important spin exchange pathways are considered. For the A’-site Mn$^{3+}$ spin sublattice, the nearest neighboring (NN) J_{eff} and the third-nearest neighboring (TNN) J_{eff} interactions overwhelm the small next-nearest neighboring (NNN) J_{eff} interaction and favor AFM ordering. In contrast, in the B- and B’-site octahedra, the NN $B(Ni^{2+})$-$B'(Mn^{4+})$ J_{eff}, NNN $B(Ni^{2+})$-$B'(Mn^{4+})$ J_{eff}, and B’(Mn^{3+})-B’(Mn^{4+}) J_{eff} interactions are all FM coupling. These results are consistent with the magnetic measurements and NPD refinements. However, different from the reported LaMn$_4$Cr$_4$O$_{12}$, where A’–B intersite spin coupling is negligible, significant A’(Mn^{3+})–B(Ni^{2+}) J_{eff} and A’(Mn^{3+})–B’(Mn^{4+}) J_{eff} exchange interactions are presented in our LMNM. Moreover, the interaction energies of J_{eff} and J_{eff} are comparable to those of NN or NNN J_{eff} and strongly suggesting that the A’-site magnetic ions play an important role in the spin ordering of the B- and B’-site magnetic ions in LMNM. As shown in Figure 8b, the calculated densities of states (DOS) demonstrates a wide energy gap of ~1.5 eV, indicating the insulating behavior of LMNM as expected from the high-spin Ni$^{2+}$ and Mn$^{4+}$ states at the corner-sharing B/B’O_6 octahedra. In addition, the DOS values of the A’-site Mn$^{3+}$, B-site Ni$^{2+}$, and B’-site Mn$^{4+}$ considerably overlap. It helps to explain the strong spin interactions among these magnetic ions. By comparison, in LaMn$_4$Cr$_4$O$_{12}$, the overlap of DOS values between the A’- and B-site ions is negligible. Note that the comparable spin interactions J_{eff} (FM), J_{eff} (AFM), and...
J_{eff} (FM) occurring among Mn$^{3+}$, Ni$^{2+}$, and Mn$^{4+}$ spins can form strong magnetic geometrical frustrations (Figure 8a). These frustrations as well as the B- and B$'$-site disorder mentioned above are very plausibly the origin of the small ordered magnetic moments observed by neutrons, because the magnetic ordering cannot be fully developed. This is a well-known effect in many oxides, typically pyrochlores, where the existence of competing interactions given by the space group geometry prevents the establishment of a long-range magnetic ordering.5

CONCLUSIONS

In summary, we have prepared a new oxide, LaMn$_3$Ni$_2$Mn$_2$O$_{12}$, by high-pressure and high-temperature synthesis techniques. The compound is confirmed to be an A-site and B-site ordered cubic quadruple perovskite with $Pn\bar{3}$ symmetry with a LaMn$^{3+}$$_3Ni^{2+}$$_2Mn^{4+}$$_2O_{12}$ charge combination. It means that three magnetic ions occupy three different atomic positions, giving rise to interesting spin interactions. With the temperature decreasing to $T_N \approx 46$ K, an AFM phase transition is observed due to the collinear G-type AFM ordering of the A$'$-site Mn$^{3+}$ spins. When the sample is further cooled to $T_C \approx 34$ K, a long-range FM-like phase transition takes place. NPD analysis reveals that the orthogonally ordered spin coupling between B-site Ni$^{2+}$ and B$'$-site Mn$^{4+}$ sublattices is responsible for this transition with a considerable net FM moment. The magnetic ground state is thus frustrated because of the coexisting FM and AFM interactions. Although most AMn$^{3+}$$_3B_2O_{12}$ perovskite compounds do not show significant A$'$–B intersite spin interactions, in the LMNM presented here, theoretical calculations demonstrate that both A$'$–B and A$'$–B$'$ pathways show considerable superexchange interactions comparable to those of A$'$–A', B–B, and B$'$–B$'$ pathways. Therefore, the A$'$-site Mn$^{3+}$ spins play an important role in determining the peculiar spin alignment for the B/B$'$-site Ni$^{2+}$/Mn$^{4+}$ ions. The unique orthogonal spin ordering is thus realized in LMNM. This is its first observation in A-site (and B-site) ordered quadruple perovskites, opening a new way to design other special magnetic structures in ordered perovskite systems.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.6b03785.

Detailed NPD refinements, magnetic structure representations, and DFT calculations (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: yifeng@iphy.ac.cn.
*E-mail: ywlong@iphy.ac.cn.

ORCID

Youwen Long: 0000-0002-8587-7818

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank G. B. Li for his useful discussion. This work was supported by the 973 Project of the Ministry of Science and Technology of China (Grants 2014CB921500 and 2016YFA0300701), the National Natural Science Foundation of China (Grant 11574378), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDB07030300). J.A.A. is grateful for the financial support of Spanish MINECO Project MAT2013-41099-R. The work at ORNL HFIR (H.C. and C.d.C.) was sponsored by the Scientific User Facilities Division, Office of Science, Basic Energy Sciences, U.S. Department of Energy.

REFERENCES

