Pressure-induced phase transitions in single-crystalline Cu$_4$Bi$_4$S$_9$ nanoribbons

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2013 Chinese Phys. B 22 116201
(http://iopscience.iop.org/1674-1056/22/11/116201)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 159.226.35.216
This content was downloaded on 03/01/2014 at 11:46

Please note that terms and conditions apply.
Pressure-induced phase transitions in single-crystalline Cu₄Bi₄S₉ nanoribbons

Hu Jing-Yu(a), Li Jing(b), Zhang Si-Jia(b), Zhao Hao-Fei(b), and Nair†(c)

Abstract: The high pressure behaviors of single Cu₄Bi₄S₉ nanoribbons prepared by using a facile solvothermal method are measured by in situ angle dispersive synchrotron X-ray diffraction and Raman scattering. A structural phase transition occurs near 14.5 GPa, and there is a pressure-induced reversible amorphization at about 25.6 GPa. The electrical transport property of a single Cu₄Bi₄S₉ nanoribbon under different pressures is also investigated.

Keywords: Cu₄Bi₄S₉ nanoribbon, high pressure, amorphization, phase transition

PACS: 62.50.–p, 61.05.cp, 78.30.–j, 64.70.K–

1. Introduction

Copper-based multi-component chalcogenides (CBMC) have been widely investigated in recent years for their potential applications as advanced materials and energy-harvesting devices in solar cells. Recently, nanoscale solar cells have been recognized as a promising class of photovoltaic devices because their nanoscale dimension permits a large amount of free movement and more efficient collection of electrons, so the CBMC with nano (micro) structures has received increased interest. For example, Ward et al. reported that the efficiency of the CuInGaS₂ system as a polycrystalline thin-film solar cell could exceed 20%. Paire et al. found that the microscale solar cells of CuInGaS₂ could improve the absolute efficiency by 4% because the microcrystall structure leads to a strong decrease in resistive losses. Since the Cu–Bi–S compounds consist of the earth-abundant and inexpensive elements of Bi and S, they become key members of the CBMC family. Nair et al. reported the fabrication of the Cu₄BiS₉ compound and indicated that it may be applied in solar cells. Later, Gerein et al. improved the synthesis of Cu₄BiS₉ thin film and measured its optical and electrical properties. They found that the Cu₄BiS₉ film could be a useful light absorber layer in solar cells due to its narrow band gap, high optical absorption coefficient, and good electrical conductivity. In 2011, Li et al. fabricated single-crystalline Cu₄Bi₄S₉ nanoribbons by using a facile solvothermal method and investigated their optical properties. The results showed that the Cu₄Bi₄S₉ nanoribbons enhance the surface photovoltage response in the whole visible wavelength range, and their photoinduced charge (electron–hole pairs) separation efficiency in the visible-light region is higher than that in the near-infrared. These properties mean that Cu₄Bi₄S₉ nanoribbons could potentially be used in optoelectronic devices such as solar cells. As nanoribbons can be the building blocks of nano devices, it is essential to study the electrical properties of an individual nanoribbon for the design and optimization of nano devices. The electrical transport properties of a single Cu₄Bi₄S₉ nanoribbon could provide useful information for its potential applications.

As is well known, the structure of a material determines its physical properties. A high pressure can tune the crystal and electronic structures of a material and further affect its electrical and optical properties, which are closely related to the photovoltaic applications. Recently, the investigation on the high pressure phases of materials has been further extended to nanomaterials. In this work, we investigate the structural stability of Cu₄Bi₄S₉ nanoribbons under pressure through in situ high pressure angle dispersive synchrotron X-ray diffraction (AD-XRD) experiments and Raman scattering measurements, and study the electrical transport property of a single Cu₄Bi₄S₉ nanoribbon.

*Project supported by the National Basic Research Program of China (Grant No. 2012CB932302) and the National Natural Science Foundation of China (Grant No. 11174336).
†Corresponding author. E-mail: rcyu@aphy.iphy.ac.cn
© 2013 Chinese Physical Society and IOP Publishing Ltd

DOI: 10.1088/1674-1056/22/11/116201

http://iopscience.iop.org/cpb http://cph.iphy.ac.cn

116201-1
2. Experimental details

Single-crystalline Cu$_4$Bi$_3$S$_9$ nanoribbons were fabricated by using a facile solvothermal method, the preparation details have been reported elsewhere.[6] The size and morphology of the samples were determined by using a Hitachi Model S-4800 field-emission scanning electron microscope (SEM). In situ high pressure AD-XRD measurements up to about 40.4 GPa were performed at the Beijing Synchrotron Radiation Facility at room temperature. The X-ray wavelength was 0.06199 nm and the diffracted X-ray was detected with an imaging plate. The high pressure was generated by using a symmetric type diamond-anvil cell (DAC) with 300 µm culets. The sample was loaded into the sample chamber in a T301 stainless steel gasket, and the pressure was measured by using the ruby fluorescence technique.[12] In situ high pressure Raman scattering measurements up to about 25.6 GPa were carried out with a LABRAM-HR confocal laser micro-Raman spectrometer (HR800), also using the DAC technique. The 532 nm line of a Verdi-2 solid-state laser was used as the Raman excitation source. A 25 × microscope objective lens was used to focus the laser beam and collect the scattered light. Because the intensities of the reflection of the Cu$_4$Bi$_3$S$_9$ nanoribbons were very weak, we did not use any pressure transmitting medium in our experiments. Normally, a pressured induced phase transition occurs at a lower pressure in non-hydrostatic compression as compared with that in hydrostatic compression. In addition, the peak width would be broadened under the non-hydrostatic condition due to the pressure gradient in the sample.

The focused ion beam (FIB) technique was employed to weld electrodes for the measurements of the temperature dependence of electrical resistivity of a single Cu$_4$Bi$_3$S$_9$ nanoribbon. The Cu$_4$Bi$_3$S$_9$ nanoribbons were spread on a silicon oxide surface and an appropriately isolated one was identified by using the SEM. Then two pairs of Pt microleads typically 500 nm in width and 100 nm in thickness were fabricated by FIB deposition. Finally, the electrical connection between the Pt microleads and the sample holder was made using highly conductive silver paste and Pt wires. The measurements of temperature-dependent resistance $R(T)$ under hydrostatic pressures up to 2.4 GPa were carried out by using the four-probe technique in a pistoncylinder pressure cell, with a 1:1 mixture of silicon oil and coal oil as the pressure transmitting medium.

3. Results and discussion

A typical morphologic image of the Cu$_4$Bi$_3$S$_9$ nanoribbons is shown in Fig. 1. The ribbon-like structure is clearly revealed. The widths of the sample are mostly in the range from 30 nm to 100 nm, and the lengths can exceed several micrometers. It was reported that the Cu$_4$Bi$_3$S$_9$ nanoribbon shows an orthorhombic structure with space group $Pnmm$ and its cell parameters are $a = 31.528$ Å, $b = 11.622$ Å, $c = 3.951$ Å.[6] As shown in Fig. 2, all the diffraction peaks of the AD-XRD pattern at 0.03 GPa can be indexed on the basis of the JCPDS file card No. 77-1238. It is consistent with the earlier report.[6] Compared with the peaks in the JCPDS card, the intensities of a few peaks are reversed, for example (031) and (131), this may be due to the preferred orientation of the nanoribbons under pressure.

The AD-XRD patterns of the Cu$_4$Bi$_3$S$_9$ nanoribbons at different pressures are shown in Fig. 3. In the pressure range from 0.03 GPa to 9.17 GPa, the diffraction peaks become broader and weaker and gradually shift to larger angles with increasing pressure, this shows the compression of the lattice. From 9.17 GPa to 14.5 GPa, some peaks begin to shift towards smaller angles with increasing pressure (indicted by *), it indicates that the crystal structure of the Cu$_4$Bi$_3$S$_9$ nanoribbons starts to change. When the pressure reaches 14.5 GPa, a new peak appears (indicted by a ♦), it means that the pressure induces a new structural phase in the Cu$_4$Bi$_3$S$_9$ nanoribbons. Above 14.5 GPa, the diffraction peaks shift to larger angles again with increasing pressure. All other peaks, except the peak of the new phase, vanish at 26.9 GPa, and some broad
bands occur; this indicates that the structure of the Cu$_4$Bi$_4$S$_9$ nanoribbons partly transforms into an amorphous structure. With increasing pressure from 31.4 GPa up to 40.4 GPa, the diffraction pattern stays similar, it indicates that the structure of the Cu$_4$Bi$_4$S$_9$ nanoribbons under high pressure is the coexistence of the new phase and amorphization. When the pressure is released to ambient pressure, some original peaks are recovered; this indicates that the amorphization of the Cu$_4$Bi$_4$S$_9$ nanoribbons is reversible.

From in situ high pressure AD-XRD measurements, we find that the structure of the Cu$_4$Bi$_4$S$_9$ nanoribbons transforms to a new phase at 14.5 GPa. Because only one peak of the new phase appears in the measured patterns, we are not able to identify the structure of this new phase. At least, the results suggest that the new phase has a crystal structure with a higher symmetry.

The pressure dependences of relative shrinkage of the lattice parameters of the orthorhombic Cu$_4$Bi$_4$S$_9$ nanoribbons are shown in Fig. 4(a). With increasing pressure, a/a_0, b/b_0, and c/c_0 decrease. The decreasing rate of a/a_0 is smaller than that of b/b_0 and c/c_0 below 3 GPa, while it is larger above 3 GPa. This result indicates that the compression of the crystal lattice exhibits an anisotropic characteristic. Figure 4(b) shows the relative volume V/V_0 (normalized to the zero pressure volume) of the orthorhombic Cu$_4$Bi$_4$S$_9$ nanoribbons as a function of pressure, where the solid line is the fitting result using the Birch–Murnaghan equation

$$P = \frac{3}{2} B_0 \left[\left(\frac{V}{V_0} \right)^{-7/3} - \left(\frac{V}{V_0} \right)^{-5/3} \right] \times \left\{ 1 - \frac{3}{4} \left(4 - B'_0 \right) \left[\left(\frac{V}{V_0} \right)^{-2/3} - 1 \right] \right\}. \quad (1)$$

With the pressure derivative B'_0 fixed at 4, we obtain the bulk modulus $B_0 = 90.9$ GPa. Compared with other CMBC materials, the bulk modulus of the orthorhombic Cu$_4$Bi$_4$S$_9$ nanoribbons is just between the chalcopyrite phase (75 GPa) and the cubic phase (123 GPa) of CuInS$_2$. [13]

In order to further confirm the pressure induced phase transitions in the Cu$_4$Bi$_4$S$_9$ nanoribbons, we performed in situ high pressure Raman scattering measurements. In Fig. 5, we display the Raman scattering spectra at different pressures up to 25.6 GPa at room temperature in the frequency region 200–1100 cm$^{-1}$. As shown in Fig. 5, the Raman spectrum of the Cu$_4$Bi$_4$S$_9$ nanoribbons at 0.4 GPa contains seven different Raman active modes: 255 cm$^{-1}$, 300 cm$^{-1}$, 318 cm$^{-1}$, 443 cm$^{-1}$, 475 cm$^{-1}$, 939 cm$^{-1}$, and 986 cm$^{-1}$. With increasing pressure, all the peaks shift towards higher frequencies, and the intensities of the peaks at 255 cm$^{-1}$, 300 cm$^{-1}$, 318 cm$^{-1}$, 443 cm$^{-1}$, 475 cm$^{-1}$ become weaker. When the pressure reaches 5.4 GPa, three peaks (255 cm$^{-1}$, 318 cm$^{-1}$, 443 cm$^{-1}$) become indiscernible. Then the peak at 300 cm$^{-1}$ disappears at 8.8 GPa. At 12.5 GPa, which is just below the phase transition pressure of 14.5 GPa obtained from AD-XRD, two new Raman active modes appear at 472 cm$^{-1}$ and 1032 cm$^{-1}$ (indicated by ◆), indicating that the structure of the Cu$_4$Bi$_4$S$_9$ nanoribbons has changed. As the pressure increases to 25.6 GPa, all peaks except the new Raman peaks are invisible and the Raman spectrum becomes broad bands; it indicates the partial amorphization of the sample. When the pressure releases to ambient pressure, some original Raman active modes reappear. This means that the amorphization of the Cu$_4$Bi$_4$S$_9$ nanoribbons is reversible. These results are consistent with the
phase transitions observed in our AD-XRD experiments.

\[\sigma = \sigma_0 \exp \left(\frac{-E}{K_B T} \right), \]

where \(\sigma \) is the conductivity of the Cu\(_4\)Bi\(_4\)S\(_9\) nanoribbon, \(\sigma_0 \) is the conductivity prefactor, \(K_B \) is the Boltzmann constant, \(T \) is the absolute temperature, and \(E \) is the activation energy (half the band gap). The activation energy of the carriers’ motion can be estimated from \(\ln \sigma^{-1} \) versus \(1/T \). Through fitting the temperature dependence of the resistance curve, we can obtain the activation energy of the Cu\(_4\)Bi\(_4\)S\(_9\) nanoribbon as 0.761 eV above 270 K at ambient pressure. The pressure dependence of the activation energy is presented in Fig. 6(b). With increasing pressure, the activation energy of the Cu\(_4\)Bi\(_4\)S\(_9\) nanoribbon decreases, which is consistent with the increase of the electrical conductivity. Similar results were also reported in the literature.\(^{15,16}\) As the pressure increases to 2.4 GPa, the activation energy slightly decreases to 0.723 eV, which is 0.038 eV (5%) lower than that at ambient pressure. As the activation energy is related to the band gap, our results would be useful for the potential application of Cu\(_4\)Bi\(_4\)S\(_9\) nanoribbons in photoelectric devices.

The thermally activated conductivity of Cu\(_4\)Bi\(_4\)S\(_9\) nanoribbons can be written as

\[\sigma = \sigma_0 \exp \left(\frac{-E}{K_B T} \right), \]

where \(\sigma \) is the conductivity of the Cu\(_4\)Bi\(_4\)S\(_9\) nanoribbon, \(\sigma_0 \) is the conductivity prefactor, \(K_B \) is the Boltzmann constant, \(T \) is the absolute temperature, and \(E \) is the activation energy (half the band gap). The activation energy of the carriers’ motion can be estimated from \(\ln \sigma^{-1} \) versus \(1/T \). Through fitting the temperature dependence of the resistance curve, we can obtain the activation energy of the Cu\(_4\)Bi\(_4\)S\(_9\) nanoribbon as 0.761 eV above 270 K at ambient pressure. The pressure dependence of the activation energy is presented in Fig. 6(b). With increasing pressure, the activation energy of the Cu\(_4\)Bi\(_4\)S\(_9\) nanoribbon decreases, which is consistent with the increase of the electrical conductivity. Similar results were also reported in the literature.\(^{15,16}\) As the pressure increases to 2.4 GPa, the activation energy slightly decreases to 0.723 eV, which is 0.038 eV (5%) lower than that at ambient pressure. As the activation energy is related to the band gap, our results would be useful for the potential application of Cu\(_4\)Bi\(_4\)S\(_9\) nanoribbons in photoelectric devices.

4. Conclusion

We fabricated single-crystalline Cu\(_4\)Bi\(_4\)S\(_9\) nanoribbons by using a facile solvothermal method, and carried out in situ AD-XRD and Raman scattering measurements under various pressures to study the structural evolution of the Cu\(_4\)Bi\(_4\)S\(_9\) nanoribbons. Pressure induced phase transition and amorphization were observed in both experiments. When the pressure released to ambient pressure, both experiments showed that the amorphization is reversible. The calculated activation energy obtained by fitting the temperature dependences of the electrical resistivity (above 270 K) at ambient pressure is 0.761 eV, and we found that the activation energy of the Cu\(_4\)Bi\(_4\)S\(_9\) nanoribbon decreases with increasing pressure.

References